用柳维尔量子主方程计算生物电导

Eszter Papp, Gabor Vattay
{"title":"用柳维尔量子主方程计算生物电导","authors":"Eszter Papp, Gabor Vattay","doi":"arxiv-2408.08017","DOIUrl":null,"url":null,"abstract":"Recent experiments have revealed that single proteins can display high\nconductivity, which stays finite for low temperatures, decays slowly with\ndistance, and exhibits a rich spatial structure featuring highly conducting and\nstrongly insulating domains. Here, we intruduce a new formula by combining the\ndensity matrix of the Liouville-Master Equation simulating quantum transport in\nnanoscale devices, and the phenomenological model of electronic conductance\nthrough molecules, that can account for the observed distance- and temperature\ndependence of conductance in proteins. We demonstrate its efficacy on\nexperimentally highly conductive extracellular cytochrome nanowires, which are\ngood candidates to illustrate our new approach by calculating and visualizing\ntheir electronic wiring, given the interest in the arrangement of their\nconducting and insulating parts. As proteins and protein nanowires exhibit\nsignificant potential for diverse applications, including energy production and\nsensing, our computational technique can accelerate the design of\nnano-bioelectronic devices.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of Biological Conductance with Liouville Quantum Master Equation\",\"authors\":\"Eszter Papp, Gabor Vattay\",\"doi\":\"arxiv-2408.08017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experiments have revealed that single proteins can display high\\nconductivity, which stays finite for low temperatures, decays slowly with\\ndistance, and exhibits a rich spatial structure featuring highly conducting and\\nstrongly insulating domains. Here, we intruduce a new formula by combining the\\ndensity matrix of the Liouville-Master Equation simulating quantum transport in\\nnanoscale devices, and the phenomenological model of electronic conductance\\nthrough molecules, that can account for the observed distance- and temperature\\ndependence of conductance in proteins. We demonstrate its efficacy on\\nexperimentally highly conductive extracellular cytochrome nanowires, which are\\ngood candidates to illustrate our new approach by calculating and visualizing\\ntheir electronic wiring, given the interest in the arrangement of their\\nconducting and insulating parts. As proteins and protein nanowires exhibit\\nsignificant potential for diverse applications, including energy production and\\nsensing, our computational technique can accelerate the design of\\nnano-bioelectronic devices.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的实验发现,单个蛋白质可以显示出高电导率,这种电导率在低温下保持有限,衰减缓慢,并表现出丰富的空间结构,其中包括高导电域和强绝缘域。在这里,我们结合模拟量子传输的刘维尔-马斯特方程(Liouville-Master Equation)的密度矩阵(density matrix)和分子电子传导的现象学模型,归纳出一个新的公式,它可以解释在蛋白质中观察到的电导的距离和温度依赖性。鉴于人们对细胞外细胞色素纳米线导电和绝缘部分的排列很感兴趣,我们通过实验证明了这种方法的有效性。由于蛋白质和蛋白质纳米线在包括能源生产和传感在内的多种应用中展现出巨大的潜力,我们的计算技术可以加速纳米生物电子器件的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of Biological Conductance with Liouville Quantum Master Equation
Recent experiments have revealed that single proteins can display high conductivity, which stays finite for low temperatures, decays slowly with distance, and exhibits a rich spatial structure featuring highly conducting and strongly insulating domains. Here, we intruduce a new formula by combining the density matrix of the Liouville-Master Equation simulating quantum transport in nanoscale devices, and the phenomenological model of electronic conductance through molecules, that can account for the observed distance- and temperature dependence of conductance in proteins. We demonstrate its efficacy on experimentally highly conductive extracellular cytochrome nanowires, which are good candidates to illustrate our new approach by calculating and visualizing their electronic wiring, given the interest in the arrangement of their conducting and insulating parts. As proteins and protein nanowires exhibit significant potential for diverse applications, including energy production and sensing, our computational technique can accelerate the design of nano-bioelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信