整合潜变量和自回归模型,实现目标导向的分子生成

Amina Mollaysa, Heath Arthur-Loui, Michael Krauthammer
{"title":"整合潜变量和自回归模型,实现目标导向的分子生成","authors":"Amina Mollaysa, Heath Arthur-Loui, Michael Krauthammer","doi":"arxiv-2409.00046","DOIUrl":null,"url":null,"abstract":"De novo molecule design has become a highly active research area, advanced\nsignificantly through the use of state-of-the-art generative models. Despite\nthese advances, several fundamental questions remain unanswered as the field\nincreasingly focuses on more complex generative models and sophisticated\nmolecular representations as an answer to the challenges of drug design. In\nthis paper, we return to the simplest representation of molecules, and\ninvestigate overlooked limitations of classical generative approaches,\nparticularly Variational Autoencoders (VAEs) and auto-regressive models. We\npropose a hybrid model in the form of a novel regularizer that leverages the\nstrengths of both to improve validity, conditional generation, and style\ntransfer of molecular sequences. Additionally, we provide an in depth\ndiscussion of overlooked assumptions of these models' behaviour.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Latent Variable and Auto-Regressive Models for Goal-directed Molecule Generation\",\"authors\":\"Amina Mollaysa, Heath Arthur-Loui, Michael Krauthammer\",\"doi\":\"arxiv-2409.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"De novo molecule design has become a highly active research area, advanced\\nsignificantly through the use of state-of-the-art generative models. Despite\\nthese advances, several fundamental questions remain unanswered as the field\\nincreasingly focuses on more complex generative models and sophisticated\\nmolecular representations as an answer to the challenges of drug design. In\\nthis paper, we return to the simplest representation of molecules, and\\ninvestigate overlooked limitations of classical generative approaches,\\nparticularly Variational Autoencoders (VAEs) and auto-regressive models. We\\npropose a hybrid model in the form of a novel regularizer that leverages the\\nstrengths of both to improve validity, conditional generation, and style\\ntransfer of molecular sequences. Additionally, we provide an in depth\\ndiscussion of overlooked assumptions of these models' behaviour.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全新分子设计已成为一个高度活跃的研究领域,并通过使用最先进的生成模型取得了重大进展。尽管取得了这些进展,但随着该领域越来越多地关注更复杂的生成模型和复杂的分子表征以应对药物设计的挑战,一些基本问题仍未得到解答。在本文中,我们将回到最简单的分子表征,研究经典生成方法,尤其是变异自动编码器(VAE)和自动回归模型被忽视的局限性。我们提出了一种以新型正则化器为形式的混合模型,该模型充分利用了二者的优势,提高了分子序列的有效性、条件生成和风格转换。此外,我们还深入讨论了这些模型行为中被忽视的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Latent Variable and Auto-Regressive Models for Goal-directed Molecule Generation
De novo molecule design has become a highly active research area, advanced significantly through the use of state-of-the-art generative models. Despite these advances, several fundamental questions remain unanswered as the field increasingly focuses on more complex generative models and sophisticated molecular representations as an answer to the challenges of drug design. In this paper, we return to the simplest representation of molecules, and investigate overlooked limitations of classical generative approaches, particularly Variational Autoencoders (VAEs) and auto-regressive models. We propose a hybrid model in the form of a novel regularizer that leverages the strengths of both to improve validity, conditional generation, and style transfer of molecular sequences. Additionally, we provide an in depth discussion of overlooked assumptions of these models' behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信