基于指令的分子图生成与统一文本图扩散模型

Yuran Xiang, Haiteng Zhao, Chang Ma, Zhi-Hong Deng
{"title":"基于指令的分子图生成与统一文本图扩散模型","authors":"Yuran Xiang, Haiteng Zhao, Chang Ma, Zhi-Hong Deng","doi":"arxiv-2408.09896","DOIUrl":null,"url":null,"abstract":"Recent advancements in computational chemistry have increasingly focused on\nsynthesizing molecules based on textual instructions. Integrating graph\ngeneration with these instructions is complex, leading most current methods to\nuse molecular sequences with pre-trained large language models. In response to\nthis challenge, we propose a novel framework, named $\\textbf{UTGDiff (Unified\nText-Graph Diffusion Model)}$, which utilizes language models for discrete\ngraph diffusion to generate molecular graphs from instructions. UTGDiff\nfeatures a unified text-graph transformer as the denoising network, derived\nfrom pre-trained language models and minimally modified to process graph data\nthrough attention bias. Our experimental results demonstrate that UTGDiff\nconsistently outperforms sequence-based baselines in tasks involving\ninstruction-based molecule generation and editing, achieving superior\nperformance with fewer parameters given an equivalent level of pretraining\ncorpus. Our code is availble at https://github.com/ran1812/UTGDiff.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instruction-Based Molecular Graph Generation with Unified Text-Graph Diffusion Model\",\"authors\":\"Yuran Xiang, Haiteng Zhao, Chang Ma, Zhi-Hong Deng\",\"doi\":\"arxiv-2408.09896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in computational chemistry have increasingly focused on\\nsynthesizing molecules based on textual instructions. Integrating graph\\ngeneration with these instructions is complex, leading most current methods to\\nuse molecular sequences with pre-trained large language models. In response to\\nthis challenge, we propose a novel framework, named $\\\\textbf{UTGDiff (Unified\\nText-Graph Diffusion Model)}$, which utilizes language models for discrete\\ngraph diffusion to generate molecular graphs from instructions. UTGDiff\\nfeatures a unified text-graph transformer as the denoising network, derived\\nfrom pre-trained language models and minimally modified to process graph data\\nthrough attention bias. Our experimental results demonstrate that UTGDiff\\nconsistently outperforms sequence-based baselines in tasks involving\\ninstruction-based molecule generation and editing, achieving superior\\nperformance with fewer parameters given an equivalent level of pretraining\\ncorpus. Our code is availble at https://github.com/ran1812/UTGDiff.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算化学的最新进展越来越多地集中在根据文本指令合成分子上。将图形生成与这些指令整合在一起非常复杂,导致目前的大多数方法都使用分子序列和预先训练好的大型语言模型。为了应对这一挑战,我们提出了一个名为 $\textbf{UTGDiff (UnifiedText-Graph Diffusion Model)}$ 的新框架,它利用离散图扩散语言模型从指令生成分子图。UTGDiff以统一文本-图转换器作为去噪网络,该网络来自预先训练的语言模型,并通过注意力偏差进行了最小化修改,以处理图数据。我们的实验结果表明,在涉及基于指令的分子生成和编辑的任务中,UTGDiff 的性能始终优于基于序列的基线,在预训练语料库水平相当的情况下,UTGDiff 以较少的参数实现了卓越的性能。我们的代码见 https://github.com/ran1812/UTGDiff。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instruction-Based Molecular Graph Generation with Unified Text-Graph Diffusion Model
Recent advancements in computational chemistry have increasingly focused on synthesizing molecules based on textual instructions. Integrating graph generation with these instructions is complex, leading most current methods to use molecular sequences with pre-trained large language models. In response to this challenge, we propose a novel framework, named $\textbf{UTGDiff (Unified Text-Graph Diffusion Model)}$, which utilizes language models for discrete graph diffusion to generate molecular graphs from instructions. UTGDiff features a unified text-graph transformer as the denoising network, derived from pre-trained language models and minimally modified to process graph data through attention bias. Our experimental results demonstrate that UTGDiff consistently outperforms sequence-based baselines in tasks involving instruction-based molecule generation and editing, achieving superior performance with fewer parameters given an equivalent level of pretraining corpus. Our code is availble at https://github.com/ran1812/UTGDiff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信