ProteinGPT:用于蛋白质特性预测和结构理解的多模式 LLM

Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, Wei Wang
{"title":"ProteinGPT:用于蛋白质特性预测和结构理解的多模式 LLM","authors":"Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, Wei Wang","doi":"arxiv-2408.11363","DOIUrl":null,"url":null,"abstract":"Understanding biological processes, drug development, and biotechnological\nadvancements requires detailed analysis of protein structures and sequences, a\ntask in protein research that is inherently complex and time-consuming when\nperformed manually. To streamline this process, we introduce ProteinGPT, a\nstate-of-the-art multi-modal protein chat system, that allows users to upload\nprotein sequences and/or structures for comprehensive protein analysis and\nresponsive inquiries. ProteinGPT seamlessly integrates protein sequence and\nstructure encoders with linear projection layers for precise representation\nadaptation, coupled with a large language model (LLM) to generate accurate and\ncontextually relevant responses. To train ProteinGPT, we construct a\nlarge-scale dataset of 132,092 proteins with annotations, and optimize the\ninstruction-tuning process using GPT-4o. This innovative system ensures\naccurate alignment between the user-uploaded data and prompts, simplifying\nprotein analysis. Experiments show that ProteinGPT can produce promising\nresponses to proteins and their corresponding questions.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding\",\"authors\":\"Yijia Xiao, Edward Sun, Yiqiao Jin, Qifan Wang, Wei Wang\",\"doi\":\"arxiv-2408.11363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding biological processes, drug development, and biotechnological\\nadvancements requires detailed analysis of protein structures and sequences, a\\ntask in protein research that is inherently complex and time-consuming when\\nperformed manually. To streamline this process, we introduce ProteinGPT, a\\nstate-of-the-art multi-modal protein chat system, that allows users to upload\\nprotein sequences and/or structures for comprehensive protein analysis and\\nresponsive inquiries. ProteinGPT seamlessly integrates protein sequence and\\nstructure encoders with linear projection layers for precise representation\\nadaptation, coupled with a large language model (LLM) to generate accurate and\\ncontextually relevant responses. To train ProteinGPT, we construct a\\nlarge-scale dataset of 132,092 proteins with annotations, and optimize the\\ninstruction-tuning process using GPT-4o. This innovative system ensures\\naccurate alignment between the user-uploaded data and prompts, simplifying\\nprotein analysis. Experiments show that ProteinGPT can produce promising\\nresponses to proteins and their corresponding questions.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解生物过程、药物开发和生物技术进步需要对蛋白质结构和序列进行详细分析,而蛋白质研究中的这一任务在人工操作时既复杂又耗时。为了简化这一过程,我们推出了最先进的多模式蛋白质聊天系统 ProteinGPT,它允许用户上传蛋白质序列和/或结构,以便进行全面的蛋白质分析和响应查询。ProteinGPT 将蛋白质序列和结构编码器与线性投影层无缝集成,以实现精确的表征适应,并与大语言模型 (LLM) 相结合,生成准确且与上下文相关的回复。为了训练 ProteinGPT,我们构建了一个包含 132,092 个蛋白质和注释的大规模数据集,并使用 GPT-4o 优化了指令调整过程。这一创新系统确保了用户上传的数据与提示之间的精确对齐,从而简化了蛋白质分析。实验表明,ProteinGPT 可以对蛋白质及其相应的问题做出令人满意的回答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding
Understanding biological processes, drug development, and biotechnological advancements requires detailed analysis of protein structures and sequences, a task in protein research that is inherently complex and time-consuming when performed manually. To streamline this process, we introduce ProteinGPT, a state-of-the-art multi-modal protein chat system, that allows users to upload protein sequences and/or structures for comprehensive protein analysis and responsive inquiries. ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation, coupled with a large language model (LLM) to generate accurate and contextually relevant responses. To train ProteinGPT, we construct a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o. This innovative system ensures accurate alignment between the user-uploaded data and prompts, simplifying protein analysis. Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信