跨越新领域:基于知识增强的大语言模型提示,实现基于零镜头文本的新分子设计

Sakhinana Sagar Srinivas, Venkataramana Runkana
{"title":"跨越新领域:基于知识增强的大语言模型提示,实现基于零镜头文本的新分子设计","authors":"Sakhinana Sagar Srinivas, Venkataramana Runkana","doi":"arxiv-2408.11866","DOIUrl":null,"url":null,"abstract":"Molecule design is a multifaceted approach that leverages computational\nmethods and experiments to optimize molecular properties, fast-tracking new\ndrug discoveries, innovative material development, and more efficient chemical\nprocesses. Recently, text-based molecule design has emerged, inspired by\nnext-generation AI tasks analogous to foundational vision-language models. Our\nstudy explores the use of knowledge-augmented prompting of large language\nmodels (LLMs) for the zero-shot text-conditional de novo molecular generation\ntask. Our approach uses task-specific instructions and a few demonstrations to\naddress distributional shift challenges when constructing augmented prompts for\nquerying LLMs to generate molecules consistent with technical descriptions. Our\nframework proves effective, outperforming state-of-the-art (SOTA) baseline\nmodels on benchmark datasets.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"419 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design\",\"authors\":\"Sakhinana Sagar Srinivas, Venkataramana Runkana\",\"doi\":\"arxiv-2408.11866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecule design is a multifaceted approach that leverages computational\\nmethods and experiments to optimize molecular properties, fast-tracking new\\ndrug discoveries, innovative material development, and more efficient chemical\\nprocesses. Recently, text-based molecule design has emerged, inspired by\\nnext-generation AI tasks analogous to foundational vision-language models. Our\\nstudy explores the use of knowledge-augmented prompting of large language\\nmodels (LLMs) for the zero-shot text-conditional de novo molecular generation\\ntask. Our approach uses task-specific instructions and a few demonstrations to\\naddress distributional shift challenges when constructing augmented prompts for\\nquerying LLMs to generate molecules consistent with technical descriptions. Our\\nframework proves effective, outperforming state-of-the-art (SOTA) baseline\\nmodels on benchmark datasets.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"419 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.11866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子设计是一种多方面的方法,它利用计算方法和实验来优化分子特性,快速跟踪新药发现、创新材料开发和更高效的化学过程。最近,受类似于基础视觉语言模型的下一代人工智能任务的启发,出现了基于文本的分子设计。我们的研究探索了将知识增强的大型语言模型(LLM)提示用于零点文本条件下的全新分子生成任务。在构建用于查询 LLM 以生成符合技术描述的分子的增强提示时,我们的方法使用了特定于任务的指令和一些演示来解决分布转移难题。我们的框架证明是有效的,在基准数据集上的表现优于最先进的(SOTA)基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design
Molecule design is a multifaceted approach that leverages computational methods and experiments to optimize molecular properties, fast-tracking new drug discoveries, innovative material development, and more efficient chemical processes. Recently, text-based molecule design has emerged, inspired by next-generation AI tasks analogous to foundational vision-language models. Our study explores the use of knowledge-augmented prompting of large language models (LLMs) for the zero-shot text-conditional de novo molecular generation task. Our approach uses task-specific instructions and a few demonstrations to address distributional shift challenges when constructing augmented prompts for querying LLMs to generate molecules consistent with technical descriptions. Our framework proves effective, outperforming state-of-the-art (SOTA) baseline models on benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信