语法指导下的分子程序合成

Michael Sun, Alston Lo, Wenhao Gao, Minghao Guo, Veronika Thost, Jie Chen, Connor Coley, Wojciech Matusik
{"title":"语法指导下的分子程序合成","authors":"Michael Sun, Alston Lo, Wenhao Gao, Minghao Guo, Veronika Thost, Jie Chen, Connor Coley, Wojciech Matusik","doi":"arxiv-2409.05873","DOIUrl":null,"url":null,"abstract":"Designing synthetically accessible molecules and recommending analogs to\nunsynthesizable molecules are important problems for accelerating molecular\ndiscovery. We reconceptualize both problems using ideas from program synthesis.\nDrawing inspiration from syntax-guided synthesis approaches, we decouple the\nsyntactic skeleton from the semantics of a synthetic tree to create a bilevel\nframework for reasoning about the combinatorial space of synthesis pathways.\nGiven a molecule we aim to generate analogs for, we iteratively refine its\nskeletal characteristics via Markov Chain Monte Carlo simulations over the\nspace of syntactic skeletons. Given a black-box oracle to optimize, we\nformulate a joint design space over syntactic templates and molecular\ndescriptors and introduce evolutionary algorithms that optimize both syntactic\nand semantic dimensions synergistically. Our key insight is that once the\nsyntactic skeleton is set, we can amortize over the search complexity of\nderiving the program's semantics by training policies to fully utilize the\nfixed horizon Markov Decision Process imposed by the syntactic template. We\ndemonstrate performance advantages of our bilevel framework for synthesizable\nanalog generation and synthesizable molecule design. Notably, our approach\noffers the user explicit control over the resources required to perform\nsynthesis and biases the design space towards simpler solutions, making it\nparticularly promising for autonomous synthesis platforms.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syntax-Guided Procedural Synthesis of Molecules\",\"authors\":\"Michael Sun, Alston Lo, Wenhao Gao, Minghao Guo, Veronika Thost, Jie Chen, Connor Coley, Wojciech Matusik\",\"doi\":\"arxiv-2409.05873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing synthetically accessible molecules and recommending analogs to\\nunsynthesizable molecules are important problems for accelerating molecular\\ndiscovery. We reconceptualize both problems using ideas from program synthesis.\\nDrawing inspiration from syntax-guided synthesis approaches, we decouple the\\nsyntactic skeleton from the semantics of a synthetic tree to create a bilevel\\nframework for reasoning about the combinatorial space of synthesis pathways.\\nGiven a molecule we aim to generate analogs for, we iteratively refine its\\nskeletal characteristics via Markov Chain Monte Carlo simulations over the\\nspace of syntactic skeletons. Given a black-box oracle to optimize, we\\nformulate a joint design space over syntactic templates and molecular\\ndescriptors and introduce evolutionary algorithms that optimize both syntactic\\nand semantic dimensions synergistically. Our key insight is that once the\\nsyntactic skeleton is set, we can amortize over the search complexity of\\nderiving the program's semantics by training policies to fully utilize the\\nfixed horizon Markov Decision Process imposed by the syntactic template. We\\ndemonstrate performance advantages of our bilevel framework for synthesizable\\nanalog generation and synthesizable molecule design. Notably, our approach\\noffers the user explicit control over the resources required to perform\\nsynthesis and biases the design space towards simpler solutions, making it\\nparticularly promising for autonomous synthesis platforms.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计可合成的分子和推荐可合成分子的类似物是加速分子发现的重要问题。我们从语法指导的合成方法中汲取灵感,将句法骨架与合成树的语义分离开来,创建了一个双层框架,用于推理合成途径的组合空间。给定一个我们希望生成类似物的分子,我们通过马尔可夫链蒙特卡罗模拟在句法骨架空间上不断完善其骨架特征。给定一个需要优化的黑盒子甲骨文,我们在句法模板和分子描述符上形成一个联合设计空间,并引入协同优化句法和语义维度的进化算法。我们的主要见解是,一旦设定了句法骨架,我们就可以通过训练策略来充分利用句法模板施加的固定视界马尔可夫决策过程,从而摊销获取程序语义的搜索复杂度。我们展示了我们的双层框架在可合成模拟生成和可合成分子设计方面的性能优势。值得注意的是,我们的方法能让用户明确控制进行合成所需的资源,并使设计空间偏向于更简单的解决方案,因此特别适合自主合成平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Syntax-Guided Procedural Synthesis of Molecules
Designing synthetically accessible molecules and recommending analogs to unsynthesizable molecules are important problems for accelerating molecular discovery. We reconceptualize both problems using ideas from program synthesis. Drawing inspiration from syntax-guided synthesis approaches, we decouple the syntactic skeleton from the semantics of a synthetic tree to create a bilevel framework for reasoning about the combinatorial space of synthesis pathways. Given a molecule we aim to generate analogs for, we iteratively refine its skeletal characteristics via Markov Chain Monte Carlo simulations over the space of syntactic skeletons. Given a black-box oracle to optimize, we formulate a joint design space over syntactic templates and molecular descriptors and introduce evolutionary algorithms that optimize both syntactic and semantic dimensions synergistically. Our key insight is that once the syntactic skeleton is set, we can amortize over the search complexity of deriving the program's semantics by training policies to fully utilize the fixed horizon Markov Decision Process imposed by the syntactic template. We demonstrate performance advantages of our bilevel framework for synthesizable analog generation and synthesizable molecule design. Notably, our approach offers the user explicit control over the resources required to perform synthesis and biases the design space towards simpler solutions, making it particularly promising for autonomous synthesis platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信