Mengjiao Wang, Mingbo Zhu, Xinzheng Hu, Kun Liu, Xuefeng Fan, Xiangkai Meng, Xudong Peng, Jinqing Wang
{"title":"椭圆纹理和 H-DLC 涂层对提高 CuAl10Fe5Ni5 阀板表面摩擦学性能的协同效应","authors":"Mengjiao Wang, Mingbo Zhu, Xinzheng Hu, Kun Liu, Xuefeng Fan, Xiangkai Meng, Xudong Peng, Jinqing Wang","doi":"10.3390/coatings14091161","DOIUrl":null,"url":null,"abstract":"Axial piston pumps with compact structures and high efficiency are widely used in construction machinery. The efficiency and lifetime strongly depend on the tribological performance of the pump’s valve plate pair. To enhance the tribological performance of the valve plate pair, surface textures, and H-DLC coatings were fabricated to modify the CuAl10Fe5Ni5 surfaces. The influences of elliptic textures of different sizes and textured H-DLC coatings on the surface friction and wear properties of the valve plate surface under oil lubrication were evaluated using a ring-on-disk tribometer. The results reveal that the friction and wear properties of the CuAl10Fe5Ni5 surfaces are significantly enhanced by elliptic textures, and the friction coefficient and wear rate of textured CuAl10Fe5Ni5 with E90 are maximally decreased by 95% and 87%, respectively. Compared with the surface textures and H-DLC coatings, the textured H-DLC coating has the greatest ability to reduce wear and adhesion. The wear rate of the textured H-DLC coating is further reduced by 98%. This improvement can be explained by the synergistic effect of the elliptic textures and H-DLC coatings, which are attributed to the reduced contact area, debris capture, and secondary lubrication of the elliptic textures, and increased surface hardness.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Effect of Elliptic Textures and H-DLC Coatings for Enhancing the Tribological Performance of CuAl10Fe5Ni5 Valve Plate Surfaces\",\"authors\":\"Mengjiao Wang, Mingbo Zhu, Xinzheng Hu, Kun Liu, Xuefeng Fan, Xiangkai Meng, Xudong Peng, Jinqing Wang\",\"doi\":\"10.3390/coatings14091161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Axial piston pumps with compact structures and high efficiency are widely used in construction machinery. The efficiency and lifetime strongly depend on the tribological performance of the pump’s valve plate pair. To enhance the tribological performance of the valve plate pair, surface textures, and H-DLC coatings were fabricated to modify the CuAl10Fe5Ni5 surfaces. The influences of elliptic textures of different sizes and textured H-DLC coatings on the surface friction and wear properties of the valve plate surface under oil lubrication were evaluated using a ring-on-disk tribometer. The results reveal that the friction and wear properties of the CuAl10Fe5Ni5 surfaces are significantly enhanced by elliptic textures, and the friction coefficient and wear rate of textured CuAl10Fe5Ni5 with E90 are maximally decreased by 95% and 87%, respectively. Compared with the surface textures and H-DLC coatings, the textured H-DLC coating has the greatest ability to reduce wear and adhesion. The wear rate of the textured H-DLC coating is further reduced by 98%. This improvement can be explained by the synergistic effect of the elliptic textures and H-DLC coatings, which are attributed to the reduced contact area, debris capture, and secondary lubrication of the elliptic textures, and increased surface hardness.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091161\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091161","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Synergistic Effect of Elliptic Textures and H-DLC Coatings for Enhancing the Tribological Performance of CuAl10Fe5Ni5 Valve Plate Surfaces
Axial piston pumps with compact structures and high efficiency are widely used in construction machinery. The efficiency and lifetime strongly depend on the tribological performance of the pump’s valve plate pair. To enhance the tribological performance of the valve plate pair, surface textures, and H-DLC coatings were fabricated to modify the CuAl10Fe5Ni5 surfaces. The influences of elliptic textures of different sizes and textured H-DLC coatings on the surface friction and wear properties of the valve plate surface under oil lubrication were evaluated using a ring-on-disk tribometer. The results reveal that the friction and wear properties of the CuAl10Fe5Ni5 surfaces are significantly enhanced by elliptic textures, and the friction coefficient and wear rate of textured CuAl10Fe5Ni5 with E90 are maximally decreased by 95% and 87%, respectively. Compared with the surface textures and H-DLC coatings, the textured H-DLC coating has the greatest ability to reduce wear and adhesion. The wear rate of the textured H-DLC coating is further reduced by 98%. This improvement can be explained by the synergistic effect of the elliptic textures and H-DLC coatings, which are attributed to the reduced contact area, debris capture, and secondary lubrication of the elliptic textures, and increased surface hardness.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material