{"title":"双辉等离子合金工艺参数的多物理场模拟研究","authors":"Lu Yu, Yiming Wen, Jindong Zhou, Yanzhao Qiu, Danning Yang, Hao Dai, Huilong Zhu, Zhiyuan Hu, Gongtao Liu, Aqib Mashood Khan, Hongyan Wu","doi":"10.3390/coatings14091175","DOIUrl":null,"url":null,"abstract":"In order to study the coupling mechanism of the process parameters during the double-glow discharge process, and thus to enhance the theoretical study of double-glow plasma surface metallurgical technology, in this paper, a two-dimensional fluid model is established using COMSOL simulation software. The effects of key processing factors on the distribution of electrons and excited argon ions, potential and electron temperature in the coupling process of double-glow discharge were investigated. The results indicated that the electron density between the two electrode plates increases as the voltage difference increases. The optimal working pressure was kept between 0.14 Torr and 0.29 Torr. The optimal electrode spacing was between 15 mm and 30 mm and decreased with the increase in pressure. Compared with the actual plasma surface alloying process experiment, the simulation results were consistent with the experiments. The research can guide experiments by combining simulation and theory, and the predictability and accuracy of double-glow surface metallurgy technology have been improved.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Multi-Physical Field Simulation of the Double-Glow Plasma Alloying Process Parameters\",\"authors\":\"Lu Yu, Yiming Wen, Jindong Zhou, Yanzhao Qiu, Danning Yang, Hao Dai, Huilong Zhu, Zhiyuan Hu, Gongtao Liu, Aqib Mashood Khan, Hongyan Wu\",\"doi\":\"10.3390/coatings14091175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to study the coupling mechanism of the process parameters during the double-glow discharge process, and thus to enhance the theoretical study of double-glow plasma surface metallurgical technology, in this paper, a two-dimensional fluid model is established using COMSOL simulation software. The effects of key processing factors on the distribution of electrons and excited argon ions, potential and electron temperature in the coupling process of double-glow discharge were investigated. The results indicated that the electron density between the two electrode plates increases as the voltage difference increases. The optimal working pressure was kept between 0.14 Torr and 0.29 Torr. The optimal electrode spacing was between 15 mm and 30 mm and decreased with the increase in pressure. Compared with the actual plasma surface alloying process experiment, the simulation results were consistent with the experiments. The research can guide experiments by combining simulation and theory, and the predictability and accuracy of double-glow surface metallurgy technology have been improved.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091175\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091175","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Study on the Multi-Physical Field Simulation of the Double-Glow Plasma Alloying Process Parameters
In order to study the coupling mechanism of the process parameters during the double-glow discharge process, and thus to enhance the theoretical study of double-glow plasma surface metallurgical technology, in this paper, a two-dimensional fluid model is established using COMSOL simulation software. The effects of key processing factors on the distribution of electrons and excited argon ions, potential and electron temperature in the coupling process of double-glow discharge were investigated. The results indicated that the electron density between the two electrode plates increases as the voltage difference increases. The optimal working pressure was kept between 0.14 Torr and 0.29 Torr. The optimal electrode spacing was between 15 mm and 30 mm and decreased with the increase in pressure. Compared with the actual plasma surface alloying process experiment, the simulation results were consistent with the experiments. The research can guide experiments by combining simulation and theory, and the predictability and accuracy of double-glow surface metallurgy technology have been improved.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material