B. M. Alotaibi, Haifa A. Al-Yousef, A. Atta, E. Abdeltwab, M. M. Abdelhamid
{"title":"用于光电子学的甲基纤维素/氧化铜纳米材料的合成、结构研究和光学行为","authors":"B. M. Alotaibi, Haifa A. Al-Yousef, A. Atta, E. Abdeltwab, M. M. Abdelhamid","doi":"10.1007/s12648-024-03218-z","DOIUrl":null,"url":null,"abstract":"<p>The polymer methyelcellouse (MC) is mixed with copper oxide (CuO) to form the MC/CuO composite using the solution casting approach for optoelectronic devices. The X-ray diffraction (XRD) analysis verified the successful preparation of the nanocomposite films. The XRD data reveals that the pristine film’s structural properties are improved after embedding CuO nanoparticles. The effects of CuO on the optical characteristics were examined. The pure MC had dispersion energy of 0.48 eV, while the MC with 3% CuO had 0.17 eV, the MC with 6% CuO had 0.07 eV, and the MC with 9% CuO had 0.03 eV. However, compared to MC, the oscillation energy E<sub>0</sub> modified from 3.86 for MC to 4.03, 4.22, and 4.77 eV, respectively. The optical properties of MC/CuO composites exhibited a notable enhancement compared to pure MC. This study focuses on developing flexible nanocomposite materials exhibiting unique properties that have potential use in high-performance optoelectronic devices.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, structural studies and optical behavior of methylcellulose/CuO nanomaterials for optoelectronics\",\"authors\":\"B. M. Alotaibi, Haifa A. Al-Yousef, A. Atta, E. Abdeltwab, M. M. Abdelhamid\",\"doi\":\"10.1007/s12648-024-03218-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The polymer methyelcellouse (MC) is mixed with copper oxide (CuO) to form the MC/CuO composite using the solution casting approach for optoelectronic devices. The X-ray diffraction (XRD) analysis verified the successful preparation of the nanocomposite films. The XRD data reveals that the pristine film’s structural properties are improved after embedding CuO nanoparticles. The effects of CuO on the optical characteristics were examined. The pure MC had dispersion energy of 0.48 eV, while the MC with 3% CuO had 0.17 eV, the MC with 6% CuO had 0.07 eV, and the MC with 9% CuO had 0.03 eV. However, compared to MC, the oscillation energy E<sub>0</sub> modified from 3.86 for MC to 4.03, 4.22, and 4.77 eV, respectively. The optical properties of MC/CuO composites exhibited a notable enhancement compared to pure MC. This study focuses on developing flexible nanocomposite materials exhibiting unique properties that have potential use in high-performance optoelectronic devices.</p>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s12648-024-03218-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03218-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
采用溶液浇铸法将聚合物甲基纤维素(MC)与氧化铜(CuO)混合形成 MC/CuO 复合材料,用于光电设备。X 射线衍射 (XRD) 分析验证了纳米复合薄膜的成功制备。XRD 数据显示,在嵌入 CuO 纳米粒子后,原始薄膜的结构特性得到了改善。研究还考察了 CuO 对光学特性的影响。纯 MC 的色散能为 0.48 eV,含 3% CuO 的 MC 为 0.17 eV,含 6% CuO 的 MC 为 0.07 eV,含 9% CuO 的 MC 为 0.03 eV。然而,与 MC 相比,振荡能 E0 分别从 MC 的 3.86 提高到了 4.03、4.22 和 4.77 eV。与纯 MC 相比,MC/CuO 复合材料的光学性能有显著提高。这项研究的重点是开发具有独特性能的柔性纳米复合材料,这些材料有望用于高性能光电器件。
Synthesis, structural studies and optical behavior of methylcellulose/CuO nanomaterials for optoelectronics
The polymer methyelcellouse (MC) is mixed with copper oxide (CuO) to form the MC/CuO composite using the solution casting approach for optoelectronic devices. The X-ray diffraction (XRD) analysis verified the successful preparation of the nanocomposite films. The XRD data reveals that the pristine film’s structural properties are improved after embedding CuO nanoparticles. The effects of CuO on the optical characteristics were examined. The pure MC had dispersion energy of 0.48 eV, while the MC with 3% CuO had 0.17 eV, the MC with 6% CuO had 0.07 eV, and the MC with 9% CuO had 0.03 eV. However, compared to MC, the oscillation energy E0 modified from 3.86 for MC to 4.03, 4.22, and 4.77 eV, respectively. The optical properties of MC/CuO composites exhibited a notable enhancement compared to pure MC. This study focuses on developing flexible nanocomposite materials exhibiting unique properties that have potential use in high-performance optoelectronic devices.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.