{"title":"改进的导热性及其应用","authors":"Priyanka Sahare, Bijay Kumar Sahoo","doi":"10.1007/s12648-024-03393-z","DOIUrl":null,"url":null,"abstract":"<p>The quantum efficiency of GaN/ Al<sub>x</sub>Ga<sub>1−x</sub>N/GaN superlattice (SL) UV-LED is reduced as a result of temperature rise in the active region of the LED. Self-heating of the device due to the temperature rise strengthens non-radiative processes, low internal efficiency, and a small lifetime of the LED. In this work, it is found that poor heat dissipation from the device due to low thermal conductivity (<i>k</i>) of the SL is one reason for temperature rise. In this investigation, we found that a 15% enhancement in <i>k</i> reduces a 7% temperature rise. A strategy of structural optimization has been carried out to demonstrate the improvement in <i>k.</i> It can be improved by managing the well barrier thickness ratio (<i>r</i>) in the SL. In this study, we found that for <i>r</i> < 1, <i>k</i> shows considerable enhancement. This well barrier thickness tailoring technique has two significant consequences: 1. improvement in <i>k;</i> 2. suppression of the detrimental effect of polarization on <i>k</i>. This work suggests that composition <i>x</i>, and structural optimization (well barrier thickness engineering), have a vital role in thermal conductivity management in SL, which can reduce the rise in temperature resulting in the high quantum efficiency of the UV-LED.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"33 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved thermal conductivity and its application\",\"authors\":\"Priyanka Sahare, Bijay Kumar Sahoo\",\"doi\":\"10.1007/s12648-024-03393-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantum efficiency of GaN/ Al<sub>x</sub>Ga<sub>1−x</sub>N/GaN superlattice (SL) UV-LED is reduced as a result of temperature rise in the active region of the LED. Self-heating of the device due to the temperature rise strengthens non-radiative processes, low internal efficiency, and a small lifetime of the LED. In this work, it is found that poor heat dissipation from the device due to low thermal conductivity (<i>k</i>) of the SL is one reason for temperature rise. In this investigation, we found that a 15% enhancement in <i>k</i> reduces a 7% temperature rise. A strategy of structural optimization has been carried out to demonstrate the improvement in <i>k.</i> It can be improved by managing the well barrier thickness ratio (<i>r</i>) in the SL. In this study, we found that for <i>r</i> < 1, <i>k</i> shows considerable enhancement. This well barrier thickness tailoring technique has two significant consequences: 1. improvement in <i>k;</i> 2. suppression of the detrimental effect of polarization on <i>k</i>. This work suggests that composition <i>x</i>, and structural optimization (well barrier thickness engineering), have a vital role in thermal conductivity management in SL, which can reduce the rise in temperature resulting in the high quantum efficiency of the UV-LED.</p>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s12648-024-03393-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03393-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
GaN/ AlxGa1-xN/GaN 超晶格(SL)紫外发光二极管的量子效率会因发光二极管有源区的温度升高而降低。温度升高导致的器件自热加强了非辐射过程,降低了内部效率,并缩短了 LED 的使用寿命。在这项研究中,我们发现由于 SL 的热传导率(k)较低,器件散热不良是导致温升的原因之一。在这项研究中,我们发现 k 值提高 15%,温升就会降低 7%。通过管理 SL 中的井壁厚度比 (r),可以改善 k 值。在这项研究中,我们发现当 r < 1 时,k 有相当大的提高。这种井壁厚度定制技术有两个重要的结果:这项工作表明,成分 x 和结构优化(阱势垒厚度工程)在 SL 的热导率管理中具有重要作用,可降低温度升高,从而实现 UV-LED 的高量子效率。
The quantum efficiency of GaN/ AlxGa1−xN/GaN superlattice (SL) UV-LED is reduced as a result of temperature rise in the active region of the LED. Self-heating of the device due to the temperature rise strengthens non-radiative processes, low internal efficiency, and a small lifetime of the LED. In this work, it is found that poor heat dissipation from the device due to low thermal conductivity (k) of the SL is one reason for temperature rise. In this investigation, we found that a 15% enhancement in k reduces a 7% temperature rise. A strategy of structural optimization has been carried out to demonstrate the improvement in k. It can be improved by managing the well barrier thickness ratio (r) in the SL. In this study, we found that for r < 1, k shows considerable enhancement. This well barrier thickness tailoring technique has two significant consequences: 1. improvement in k; 2. suppression of the detrimental effect of polarization on k. This work suggests that composition x, and structural optimization (well barrier thickness engineering), have a vital role in thermal conductivity management in SL, which can reduce the rise in temperature resulting in the high quantum efficiency of the UV-LED.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.