{"title":"二维氧化镍纳米片薄膜电极在储能设备中的设计与性能评估","authors":"Peeyush Phogat, Shreya, Ranjana Jha, Sukhvir Singh","doi":"10.1007/s12648-024-03415-w","DOIUrl":null,"url":null,"abstract":"<p>This research comprehensively investigates the structural, optical, and electrochemical properties of nickel oxide (NiO) nanoparticles, focusing on its potential applications in energy storage systems, particularly electrochemical double-layer capacitors (EDLCs). In a single-step hydrothermal process, two-dimensional (2D) NiO nanoparticles was synthesized using carbon templates. X-ray diffraction analysis confirmed NiO nanoparticle’s crystalline nature, revealing a crystallite size of approximately 35 nm. Optical characterization unveiled NiO nanoparticle’s distinctive absorption pattern in the UV region, with additional absorbance observed in the visible region, and a calculated band gap of 2.6 eV. Morphological studies depicted a unique 2D nanosheets structure for NiO nanoparticles, with microstructural images showing fringe patterns and selected area electron diffraction patterns indicating its polycrystalline nature. NiO nanoparticles exhibit excellent electrochemical performance, including high specific capacitance, which is crucial for efficient energy storage. Their unique 2D nanosheet structure enhances surface area and facilitates better charge transport, making them ideal for EDLCs. Additionally, the reduced band gap of NiO nanoparticles, as determined in this study, improves their conductivity and overall electrochemical behavior. These novel attributes position NiO nanoparticles as superior materials for advancing the performance and efficiency of energy storage devices. Crucially, NiO nanoparticles exhibited a high specific capacitance of 13 F/g, highlighting its suitability for EDLCs. This finding positions NiO nanoparticles as a promising candidate for energy storage applications, advancing the field of supercapacitors. Electrochemical analysis through cyclic voltammetry and Nyquist plots further elucidated the material's potential in energy storage applications. This interdisciplinary exploration enriches our understanding of NiO nanoparticles and underscores its utility in emerging energy storage technologies, guiding further advancements in supercapacitor systems for sustainable energy solutions.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and performance evaluation of 2D nickel oxide nanosheet thin film electrodes in energy storage devices\",\"authors\":\"Peeyush Phogat, Shreya, Ranjana Jha, Sukhvir Singh\",\"doi\":\"10.1007/s12648-024-03415-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research comprehensively investigates the structural, optical, and electrochemical properties of nickel oxide (NiO) nanoparticles, focusing on its potential applications in energy storage systems, particularly electrochemical double-layer capacitors (EDLCs). In a single-step hydrothermal process, two-dimensional (2D) NiO nanoparticles was synthesized using carbon templates. X-ray diffraction analysis confirmed NiO nanoparticle’s crystalline nature, revealing a crystallite size of approximately 35 nm. Optical characterization unveiled NiO nanoparticle’s distinctive absorption pattern in the UV region, with additional absorbance observed in the visible region, and a calculated band gap of 2.6 eV. Morphological studies depicted a unique 2D nanosheets structure for NiO nanoparticles, with microstructural images showing fringe patterns and selected area electron diffraction patterns indicating its polycrystalline nature. NiO nanoparticles exhibit excellent electrochemical performance, including high specific capacitance, which is crucial for efficient energy storage. Their unique 2D nanosheet structure enhances surface area and facilitates better charge transport, making them ideal for EDLCs. Additionally, the reduced band gap of NiO nanoparticles, as determined in this study, improves their conductivity and overall electrochemical behavior. These novel attributes position NiO nanoparticles as superior materials for advancing the performance and efficiency of energy storage devices. Crucially, NiO nanoparticles exhibited a high specific capacitance of 13 F/g, highlighting its suitability for EDLCs. This finding positions NiO nanoparticles as a promising candidate for energy storage applications, advancing the field of supercapacitors. Electrochemical analysis through cyclic voltammetry and Nyquist plots further elucidated the material's potential in energy storage applications. This interdisciplinary exploration enriches our understanding of NiO nanoparticles and underscores its utility in emerging energy storage technologies, guiding further advancements in supercapacitor systems for sustainable energy solutions.</p>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s12648-024-03415-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03415-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and performance evaluation of 2D nickel oxide nanosheet thin film electrodes in energy storage devices
This research comprehensively investigates the structural, optical, and electrochemical properties of nickel oxide (NiO) nanoparticles, focusing on its potential applications in energy storage systems, particularly electrochemical double-layer capacitors (EDLCs). In a single-step hydrothermal process, two-dimensional (2D) NiO nanoparticles was synthesized using carbon templates. X-ray diffraction analysis confirmed NiO nanoparticle’s crystalline nature, revealing a crystallite size of approximately 35 nm. Optical characterization unveiled NiO nanoparticle’s distinctive absorption pattern in the UV region, with additional absorbance observed in the visible region, and a calculated band gap of 2.6 eV. Morphological studies depicted a unique 2D nanosheets structure for NiO nanoparticles, with microstructural images showing fringe patterns and selected area electron diffraction patterns indicating its polycrystalline nature. NiO nanoparticles exhibit excellent electrochemical performance, including high specific capacitance, which is crucial for efficient energy storage. Their unique 2D nanosheet structure enhances surface area and facilitates better charge transport, making them ideal for EDLCs. Additionally, the reduced band gap of NiO nanoparticles, as determined in this study, improves their conductivity and overall electrochemical behavior. These novel attributes position NiO nanoparticles as superior materials for advancing the performance and efficiency of energy storage devices. Crucially, NiO nanoparticles exhibited a high specific capacitance of 13 F/g, highlighting its suitability for EDLCs. This finding positions NiO nanoparticles as a promising candidate for energy storage applications, advancing the field of supercapacitors. Electrochemical analysis through cyclic voltammetry and Nyquist plots further elucidated the material's potential in energy storage applications. This interdisciplinary exploration enriches our understanding of NiO nanoparticles and underscores its utility in emerging energy storage technologies, guiding further advancements in supercapacitor systems for sustainable energy solutions.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.