未来抛物面槽式集热器吸收涂层的开发和使用寿命估算

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Coatings Pub Date : 2024-09-02 DOI:10.3390/coatings14091111
Ana Drinčić, Luka Noč, Franci Merzel, Ivan Jerman
{"title":"未来抛物面槽式集热器吸收涂层的开发和使用寿命估算","authors":"Ana Drinčić, Luka Noč, Franci Merzel, Ivan Jerman","doi":"10.3390/coatings14091111","DOIUrl":null,"url":null,"abstract":"This work presents a study on the optical and mechanical degradation of parabolic trough collector absorber coatings produced through the spray coating application technique of in-house developed paint. The main aim of this investigation is to prepare, cure, load, and analyze the absorber coating on the substrate under conditions that mimic the on-field thermal properties. This research incorporates predicted isothermal and cyclic loads for parabolic trough systems as stresses. Biweekly inspections of loaded, identical samples monitored the degradation process. We further used the cascade of data from optical, oxide-thickening, crack length, and pull-off force measurements in mathematical modelling to predict the service life of the parabolic trough collector. The results collected and used in modelling suggested that cyclic load in combination with iso-thermal load is responsible for coating fatigue, influencing the solar absorber optical values and resulting in lower energy transformation efficiency. Finally, easy-to-apply coatings made out of spinel-structured black pigment and durable binder could serve as a low-cost absorber coating replacement for a new generation of parabolic trough collectors, making it possible to harvest solar energy to provide medium-temperature heat to decarbonize future food, tobacco, and paint production industrial processes.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future Parabolic Trough Collector Absorber Coating Development and Service Lifetime Estimation\",\"authors\":\"Ana Drinčić, Luka Noč, Franci Merzel, Ivan Jerman\",\"doi\":\"10.3390/coatings14091111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a study on the optical and mechanical degradation of parabolic trough collector absorber coatings produced through the spray coating application technique of in-house developed paint. The main aim of this investigation is to prepare, cure, load, and analyze the absorber coating on the substrate under conditions that mimic the on-field thermal properties. This research incorporates predicted isothermal and cyclic loads for parabolic trough systems as stresses. Biweekly inspections of loaded, identical samples monitored the degradation process. We further used the cascade of data from optical, oxide-thickening, crack length, and pull-off force measurements in mathematical modelling to predict the service life of the parabolic trough collector. The results collected and used in modelling suggested that cyclic load in combination with iso-thermal load is responsible for coating fatigue, influencing the solar absorber optical values and resulting in lower energy transformation efficiency. Finally, easy-to-apply coatings made out of spinel-structured black pigment and durable binder could serve as a low-cost absorber coating replacement for a new generation of parabolic trough collectors, making it possible to harvest solar energy to provide medium-temperature heat to decarbonize future food, tobacco, and paint production industrial processes.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091111\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091111","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了对抛物面槽式集热器吸收涂层的光学和机械降解的研究,该涂层是通过内部开发的涂料喷涂应用技术生产的。这项研究的主要目的是在模拟现场热特性的条件下,制备、固化、加载和分析基体上的吸收涂层。这项研究将抛物面槽系统的预测等温和循环载荷作为应力。每两周对加载的相同样品进行一次检查,以监测降解过程。我们在数学建模中进一步使用了光学、氧化物增厚、裂纹长度和拉拔力测量的一系列数据,以预测抛物面槽式集热器的使用寿命。所收集并用于建模的结果表明,循环载荷与等温载荷共同造成了涂层疲劳,影响了太阳能吸收器的光学值,导致能量转化效率降低。最后,由尖晶石结构黑色颜料和耐用粘合剂制成的涂层易于涂抹,可作为新一代抛物面槽式集热器的低成本吸收涂层替代品,从而有可能收集太阳能,为未来的食品、烟草和涂料生产工业过程提供中温热量,实现脱碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future Parabolic Trough Collector Absorber Coating Development and Service Lifetime Estimation
This work presents a study on the optical and mechanical degradation of parabolic trough collector absorber coatings produced through the spray coating application technique of in-house developed paint. The main aim of this investigation is to prepare, cure, load, and analyze the absorber coating on the substrate under conditions that mimic the on-field thermal properties. This research incorporates predicted isothermal and cyclic loads for parabolic trough systems as stresses. Biweekly inspections of loaded, identical samples monitored the degradation process. We further used the cascade of data from optical, oxide-thickening, crack length, and pull-off force measurements in mathematical modelling to predict the service life of the parabolic trough collector. The results collected and used in modelling suggested that cyclic load in combination with iso-thermal load is responsible for coating fatigue, influencing the solar absorber optical values and resulting in lower energy transformation efficiency. Finally, easy-to-apply coatings made out of spinel-structured black pigment and durable binder could serve as a low-cost absorber coating replacement for a new generation of parabolic trough collectors, making it possible to harvest solar energy to provide medium-temperature heat to decarbonize future food, tobacco, and paint production industrial processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信