{"title":"掺杂 Cd/Er 的 Bi2MoO6 光催化降解磺胺甲噁唑","authors":"Nengxun Yang, Yixuan Niu, Bohang Zhang, Fuchun Zhang","doi":"10.3390/coatings14091112","DOIUrl":null,"url":null,"abstract":"Bi2MoO6 (BMO) is a typical bismuth-based semiconductor material, and its unique Aurivillius structure provides a broad space for electron delocalization. In this study, a new type of bismuth molybdate Cd/Er-BMO photocatalytic material was prepared by co-doping Er3+ and Cd2+, and the performance of the photocatalytic degradation of sulfamethoxazole (SMZ) was systematically studied. The research results showed that the efficiency of SMZ degradation by Cd/Er-BMO was significantly improved after doping Er3+ and Cd2+ ions, reflecting the synergistic catalytic effect of Cd2+ and Er3+ co-doping. Cd/Er-BMO doped with 6% Cd had the highest degradation efficiency (93.89%) of SMZ under visible light irradiation. The material revealed excellent stability and reusability in repeated degradation experiments. In addition, 6% Cd/Er-BMO had a smaller particle size and a larger specific surface area, which is conducive to improving the generation efficiency of its photogenerated electron-hole pairs and reducing the recombination rate, significantly enhancing the photocatalysis of the material. This study not only provides an effective photocatalyst for degrading environmental pollutants such as SMZ, but also provides an important scientific basis and new ideas for the future development of efficient and stable photocatalytic materials.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"35 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Degradation of Sulfamethoxazole by Cd/Er-Doped Bi2MoO6\",\"authors\":\"Nengxun Yang, Yixuan Niu, Bohang Zhang, Fuchun Zhang\",\"doi\":\"10.3390/coatings14091112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi2MoO6 (BMO) is a typical bismuth-based semiconductor material, and its unique Aurivillius structure provides a broad space for electron delocalization. In this study, a new type of bismuth molybdate Cd/Er-BMO photocatalytic material was prepared by co-doping Er3+ and Cd2+, and the performance of the photocatalytic degradation of sulfamethoxazole (SMZ) was systematically studied. The research results showed that the efficiency of SMZ degradation by Cd/Er-BMO was significantly improved after doping Er3+ and Cd2+ ions, reflecting the synergistic catalytic effect of Cd2+ and Er3+ co-doping. Cd/Er-BMO doped with 6% Cd had the highest degradation efficiency (93.89%) of SMZ under visible light irradiation. The material revealed excellent stability and reusability in repeated degradation experiments. In addition, 6% Cd/Er-BMO had a smaller particle size and a larger specific surface area, which is conducive to improving the generation efficiency of its photogenerated electron-hole pairs and reducing the recombination rate, significantly enhancing the photocatalysis of the material. This study not only provides an effective photocatalyst for degrading environmental pollutants such as SMZ, but also provides an important scientific basis and new ideas for the future development of efficient and stable photocatalytic materials.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091112\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091112","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
摘要
Bi2MoO6(BMO)是一种典型的铋基半导体材料,其独特的Aurivillius结构为电子析出提供了广阔的空间。本研究通过共掺杂Er3+和Cd2+制备了一种新型钼酸铋Cd/Er-BMO光催化材料,并系统研究了其光催化降解磺胺甲噁唑(SMZ)的性能。研究结果表明,掺杂Er3+和Cd2+离子后,Cd/Er-BMO降解磺胺甲噁唑的效率显著提高,反映了Cd2+和Er3+共掺杂的协同催化效应。在可见光照射下,掺杂了 6% Cd 的 Cd/Er-BMO 对 SMZ 的降解效率最高(93.89%)。在反复降解实验中,该材料显示出优异的稳定性和可重复使用性。此外,6% Cd/Er-BMO 的粒径更小,比表面积更大,有利于提高其光生成的电子-空穴对的生成效率,降低重组率,从而显著增强材料的光催化性能。该研究不仅为降解SMZ等环境污染物提供了一种有效的光催化剂,也为今后开发高效稳定的光催化材料提供了重要的科学依据和新思路。
Photocatalytic Degradation of Sulfamethoxazole by Cd/Er-Doped Bi2MoO6
Bi2MoO6 (BMO) is a typical bismuth-based semiconductor material, and its unique Aurivillius structure provides a broad space for electron delocalization. In this study, a new type of bismuth molybdate Cd/Er-BMO photocatalytic material was prepared by co-doping Er3+ and Cd2+, and the performance of the photocatalytic degradation of sulfamethoxazole (SMZ) was systematically studied. The research results showed that the efficiency of SMZ degradation by Cd/Er-BMO was significantly improved after doping Er3+ and Cd2+ ions, reflecting the synergistic catalytic effect of Cd2+ and Er3+ co-doping. Cd/Er-BMO doped with 6% Cd had the highest degradation efficiency (93.89%) of SMZ under visible light irradiation. The material revealed excellent stability and reusability in repeated degradation experiments. In addition, 6% Cd/Er-BMO had a smaller particle size and a larger specific surface area, which is conducive to improving the generation efficiency of its photogenerated electron-hole pairs and reducing the recombination rate, significantly enhancing the photocatalysis of the material. This study not only provides an effective photocatalyst for degrading environmental pollutants such as SMZ, but also provides an important scientific basis and new ideas for the future development of efficient and stable photocatalytic materials.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material