{"title":"通过 HVAF 研究 Ni6035WC/Wc-10Cr-4Cr 涂层的磨损和冲刷性能","authors":"Xinghua Liang, Tong Zhuang, Lingxiao Lan, Jian Huang, Siying Li, Yunsheng Lei, Bohan Xu, Yujiang Wang, Xueli Shi, Qicheng Hu","doi":"10.3390/coatings14091148","DOIUrl":null,"url":null,"abstract":"The Ni6035WC/WC-10Co-4Cr wear- and scour-resistant composite coating was fabricated using supersonic flame spraying technology. To further enhance the wear and scour resistance of the HVAF-sprayed Ni6035WC/WC-10Co-4Cr composite coatings, a post-treatment was conducted via vacuum remelting. This involved placing the coatings in a vacuum sintering process at 1120 °C for 10 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and hardness testing were employed to characterize the structure and morphology of the Ni6035WC/WC-10Co-4Cr coating, as well as to assess its wear and scour resistance. The results indicate that vacuum sintering significantly enhances the wear and scour resistance of the coating, while also improving its hardness, density, and bonding strength. The hardness of each coating after vacuum sintering, 1019 HV, 920 HV, and 897 HV, was improved by 6% compared to 966 HV, 906 HV, and 845 HV before sintering. The average wear rate of each coating after sintering was 13% lower than before vacuum sintering. Furthermore, the impact of varying WC-10Co-4Cr content on the coating’s properties was examined under identical test conditions. It was found that the optimal overall performance was achieved with a WC-10Co-4Cr content of 20%, resulting in an average wear rate that was 19% lower than that of other coatings.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Wear and Scour Performance of Ni6035WC/Wc-10Cr-4Cr Coating by HVAF\",\"authors\":\"Xinghua Liang, Tong Zhuang, Lingxiao Lan, Jian Huang, Siying Li, Yunsheng Lei, Bohan Xu, Yujiang Wang, Xueli Shi, Qicheng Hu\",\"doi\":\"10.3390/coatings14091148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ni6035WC/WC-10Co-4Cr wear- and scour-resistant composite coating was fabricated using supersonic flame spraying technology. To further enhance the wear and scour resistance of the HVAF-sprayed Ni6035WC/WC-10Co-4Cr composite coatings, a post-treatment was conducted via vacuum remelting. This involved placing the coatings in a vacuum sintering process at 1120 °C for 10 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and hardness testing were employed to characterize the structure and morphology of the Ni6035WC/WC-10Co-4Cr coating, as well as to assess its wear and scour resistance. The results indicate that vacuum sintering significantly enhances the wear and scour resistance of the coating, while also improving its hardness, density, and bonding strength. The hardness of each coating after vacuum sintering, 1019 HV, 920 HV, and 897 HV, was improved by 6% compared to 966 HV, 906 HV, and 845 HV before sintering. The average wear rate of each coating after sintering was 13% lower than before vacuum sintering. Furthermore, the impact of varying WC-10Co-4Cr content on the coating’s properties was examined under identical test conditions. It was found that the optimal overall performance was achieved with a WC-10Co-4Cr content of 20%, resulting in an average wear rate that was 19% lower than that of other coatings.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091148\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091148","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Study on Wear and Scour Performance of Ni6035WC/Wc-10Cr-4Cr Coating by HVAF
The Ni6035WC/WC-10Co-4Cr wear- and scour-resistant composite coating was fabricated using supersonic flame spraying technology. To further enhance the wear and scour resistance of the HVAF-sprayed Ni6035WC/WC-10Co-4Cr composite coatings, a post-treatment was conducted via vacuum remelting. This involved placing the coatings in a vacuum sintering process at 1120 °C for 10 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and hardness testing were employed to characterize the structure and morphology of the Ni6035WC/WC-10Co-4Cr coating, as well as to assess its wear and scour resistance. The results indicate that vacuum sintering significantly enhances the wear and scour resistance of the coating, while also improving its hardness, density, and bonding strength. The hardness of each coating after vacuum sintering, 1019 HV, 920 HV, and 897 HV, was improved by 6% compared to 966 HV, 906 HV, and 845 HV before sintering. The average wear rate of each coating after sintering was 13% lower than before vacuum sintering. Furthermore, the impact of varying WC-10Co-4Cr content on the coating’s properties was examined under identical test conditions. It was found that the optimal overall performance was achieved with a WC-10Co-4Cr content of 20%, resulting in an average wear rate that was 19% lower than that of other coatings.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material