Siddratul Sarah binti Mohd Hami, Nor Dalila Nor Affandi, Liliana Indrie, Ahmad Mukifza Harun
{"title":"利用涂覆在织物基底上的沸石负载纳米纤维去除雷马佐红色染料","authors":"Siddratul Sarah binti Mohd Hami, Nor Dalila Nor Affandi, Liliana Indrie, Ahmad Mukifza Harun","doi":"10.3390/coatings14091155","DOIUrl":null,"url":null,"abstract":"Nanofibre-based membranes have shown great potential for removing textile wastewater due to their high porosity and surface area. However, nanofibre membranes exhibit lower dye removal efficiency. Hence, this study aims to improve the dye removal performance of nanofibre membranes by incorporating zeolites. The research involved fabricating composite membranes by electrospinning polyvinyl alcohol (PVA) nanofibres incorporated with zeolites. Mechanical strength was enhanced by placing the PVA/zeolite nanofibre membrane between fusible nonwoven interfacing and woven polyester fabric, followed by heat treatment. Morphological analysis revealed the uniform dispersion of zeolite particles within the PVA nanofibres. EDX analysis confirmed the successful incorporation of zeolites into the fibres. Among all membrane samples, the PZ-0.75 membrane exhibited the highest pure water flux (PWF) with approximately 1358.57 L·m−2·min−1 for distilled water and 499.85 L·m−2·min−1 for batik wastewater. Turbidity of batik wastewater increased proportionally with zeolite concentration, with removal rates of 84.79%, 78.8%, 76.96%, and 74.19% for PZ-0.75, PZ-0.5, PZ-0.25, and PVA membranes, respectively. Furthermore, the UV/Vis spectrophotometer demonstrated that dye removal efficiency increased from 2.22% to 8.89% as the zeolite concentration increased from 0% to 0.75%. In addition, the PZ-0.75 membrane effectively removed RR dye at a concentration of 1 mg/L, with an optimal contact time of approximately 60 min. The adsorption mechanism of the PZ-0.75 membrane aligns with the Freundlich model, with an R2 value of 0.983. Overall, this study demonstrates the efficiency of zeolite in the fabric substrates to improve the filtration and adsorption properties for wastewater treatment, particularly in textile industries.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Remazol Red Dyes Using Zeolites-Loaded Nanofibre Coated on Fabric Substrates\",\"authors\":\"Siddratul Sarah binti Mohd Hami, Nor Dalila Nor Affandi, Liliana Indrie, Ahmad Mukifza Harun\",\"doi\":\"10.3390/coatings14091155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofibre-based membranes have shown great potential for removing textile wastewater due to their high porosity and surface area. However, nanofibre membranes exhibit lower dye removal efficiency. Hence, this study aims to improve the dye removal performance of nanofibre membranes by incorporating zeolites. The research involved fabricating composite membranes by electrospinning polyvinyl alcohol (PVA) nanofibres incorporated with zeolites. Mechanical strength was enhanced by placing the PVA/zeolite nanofibre membrane between fusible nonwoven interfacing and woven polyester fabric, followed by heat treatment. Morphological analysis revealed the uniform dispersion of zeolite particles within the PVA nanofibres. EDX analysis confirmed the successful incorporation of zeolites into the fibres. Among all membrane samples, the PZ-0.75 membrane exhibited the highest pure water flux (PWF) with approximately 1358.57 L·m−2·min−1 for distilled water and 499.85 L·m−2·min−1 for batik wastewater. Turbidity of batik wastewater increased proportionally with zeolite concentration, with removal rates of 84.79%, 78.8%, 76.96%, and 74.19% for PZ-0.75, PZ-0.5, PZ-0.25, and PVA membranes, respectively. Furthermore, the UV/Vis spectrophotometer demonstrated that dye removal efficiency increased from 2.22% to 8.89% as the zeolite concentration increased from 0% to 0.75%. In addition, the PZ-0.75 membrane effectively removed RR dye at a concentration of 1 mg/L, with an optimal contact time of approximately 60 min. The adsorption mechanism of the PZ-0.75 membrane aligns with the Freundlich model, with an R2 value of 0.983. Overall, this study demonstrates the efficiency of zeolite in the fabric substrates to improve the filtration and adsorption properties for wastewater treatment, particularly in textile industries.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091155\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091155","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Removal of Remazol Red Dyes Using Zeolites-Loaded Nanofibre Coated on Fabric Substrates
Nanofibre-based membranes have shown great potential for removing textile wastewater due to their high porosity and surface area. However, nanofibre membranes exhibit lower dye removal efficiency. Hence, this study aims to improve the dye removal performance of nanofibre membranes by incorporating zeolites. The research involved fabricating composite membranes by electrospinning polyvinyl alcohol (PVA) nanofibres incorporated with zeolites. Mechanical strength was enhanced by placing the PVA/zeolite nanofibre membrane between fusible nonwoven interfacing and woven polyester fabric, followed by heat treatment. Morphological analysis revealed the uniform dispersion of zeolite particles within the PVA nanofibres. EDX analysis confirmed the successful incorporation of zeolites into the fibres. Among all membrane samples, the PZ-0.75 membrane exhibited the highest pure water flux (PWF) with approximately 1358.57 L·m−2·min−1 for distilled water and 499.85 L·m−2·min−1 for batik wastewater. Turbidity of batik wastewater increased proportionally with zeolite concentration, with removal rates of 84.79%, 78.8%, 76.96%, and 74.19% for PZ-0.75, PZ-0.5, PZ-0.25, and PVA membranes, respectively. Furthermore, the UV/Vis spectrophotometer demonstrated that dye removal efficiency increased from 2.22% to 8.89% as the zeolite concentration increased from 0% to 0.75%. In addition, the PZ-0.75 membrane effectively removed RR dye at a concentration of 1 mg/L, with an optimal contact time of approximately 60 min. The adsorption mechanism of the PZ-0.75 membrane aligns with the Freundlich model, with an R2 value of 0.983. Overall, this study demonstrates the efficiency of zeolite in the fabric substrates to improve the filtration and adsorption properties for wastewater treatment, particularly in textile industries.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material