{"title":"$$\\mathbb {R}^n$$ 和 $$\\mathbb {C}^n$$ 中规范的一些尖锐不等式","authors":"Stefan Gerdjikov, Nikolai Nikolov","doi":"10.1007/s00605-024-02004-7","DOIUrl":null,"url":null,"abstract":"<p>The main result of this paper is that for any norm on a complex or real <i>n</i>-dimensional linear space, every extremal basis satisfies inverted triangle inequality with scaling factor <span>\\(2^n-1\\)</span>. Furthermore, the constant <span>\\(2^n-1\\)</span> is tight. We also prove that the norms of any two extremal bases are comparable with a factor of <span>\\(2^n-1\\)</span>, which, intuitively, means that any two extremal bases are quantitatively equivalent with the stated tolerance.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some sharp inequalities for norms in $$\\\\mathbb {R}^n$$ and $$\\\\mathbb {C}^n$$\",\"authors\":\"Stefan Gerdjikov, Nikolai Nikolov\",\"doi\":\"10.1007/s00605-024-02004-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The main result of this paper is that for any norm on a complex or real <i>n</i>-dimensional linear space, every extremal basis satisfies inverted triangle inequality with scaling factor <span>\\\\(2^n-1\\\\)</span>. Furthermore, the constant <span>\\\\(2^n-1\\\\)</span> is tight. We also prove that the norms of any two extremal bases are comparable with a factor of <span>\\\\(2^n-1\\\\)</span>, which, intuitively, means that any two extremal bases are quantitatively equivalent with the stated tolerance.</p>\",\"PeriodicalId\":18913,\"journal\":{\"name\":\"Monatshefte für Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Mathematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-02004-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-02004-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文的主要结果是,对于复数或实数 n 维线性空间上的任意规范,每个极值基础都满足具有缩放因子 \(2^n-1\) 的倒三角不等式。此外,常数 \(2^n-1\) 是紧密的。我们还证明了任意两个极值基的规范是以\(2^n-1\)的因子进行比较的,直观地说,这意味着任意两个极值基在数量上是等价的,具有所述的容差。
Some sharp inequalities for norms in $$\mathbb {R}^n$$ and $$\mathbb {C}^n$$
The main result of this paper is that for any norm on a complex or real n-dimensional linear space, every extremal basis satisfies inverted triangle inequality with scaling factor \(2^n-1\). Furthermore, the constant \(2^n-1\) is tight. We also prove that the norms of any two extremal bases are comparable with a factor of \(2^n-1\), which, intuitively, means that any two extremal bases are quantitatively equivalent with the stated tolerance.