HyperSteiner:计算启发式双曲斯坦纳最小树

Alejandro García-Castellanos, Aniss Aiman Medbouhi, Giovanni Luca Marchetti, Erik J. Bekkers, Danica Kragic
{"title":"HyperSteiner:计算启发式双曲斯坦纳最小树","authors":"Alejandro García-Castellanos, Aniss Aiman Medbouhi, Giovanni Luca Marchetti, Erik J. Bekkers, Danica Kragic","doi":"arxiv-2409.05671","DOIUrl":null,"url":null,"abstract":"We propose HyperSteiner -- an efficient heuristic algorithm for computing\nSteiner minimal trees in the hyperbolic space. HyperSteiner extends the\nEuclidean Smith-Lee-Liebman algorithm, which is grounded in a\ndivide-and-conquer approach involving the Delaunay triangulation. The central\nidea is rephrasing Steiner tree problems with three terminals as a system of\nequations in the Klein-Beltrami model. Motivated by the fact that hyperbolic\ngeometry is well-suited for representing hierarchies, we explore applications\nto hierarchy discovery in data. Results show that HyperSteiner infers more\nrealistic hierarchies than the Minimum Spanning Tree and is more scalable to\nlarge datasets than Neighbor Joining.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees\",\"authors\":\"Alejandro García-Castellanos, Aniss Aiman Medbouhi, Giovanni Luca Marchetti, Erik J. Bekkers, Danica Kragic\",\"doi\":\"arxiv-2409.05671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose HyperSteiner -- an efficient heuristic algorithm for computing\\nSteiner minimal trees in the hyperbolic space. HyperSteiner extends the\\nEuclidean Smith-Lee-Liebman algorithm, which is grounded in a\\ndivide-and-conquer approach involving the Delaunay triangulation. The central\\nidea is rephrasing Steiner tree problems with three terminals as a system of\\nequations in the Klein-Beltrami model. Motivated by the fact that hyperbolic\\ngeometry is well-suited for representing hierarchies, we explore applications\\nto hierarchy discovery in data. Results show that HyperSteiner infers more\\nrealistic hierarchies than the Minimum Spanning Tree and is more scalable to\\nlarge datasets than Neighbor Joining.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了HyperSteiner--一种计算双曲空间中Steiner最小树的高效启发式算法。HyperSteiner扩展了Euclidean Smith-Lee-Liebman算法,该算法以涉及Delaunay三角剖分的分而治之法为基础。其核心思想是将具有三个终端的斯坦纳树问题重新表述为克莱因-贝尔特拉米模型中的方程系统。受双曲几何非常适合表示层次结构这一事实的启发,我们探索了在数据中发现层次结构的应用。结果表明,与最小生成树相比,HyperSteiner 能推导出现实的层次结构,与邻接法相比,HyperSteiner 对大型数据集的扩展性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HyperSteiner: Computing Heuristic Hyperbolic Steiner Minimal Trees
We propose HyperSteiner -- an efficient heuristic algorithm for computing Steiner minimal trees in the hyperbolic space. HyperSteiner extends the Euclidean Smith-Lee-Liebman algorithm, which is grounded in a divide-and-conquer approach involving the Delaunay triangulation. The central idea is rephrasing Steiner tree problems with three terminals as a system of equations in the Klein-Beltrami model. Motivated by the fact that hyperbolic geometry is well-suited for representing hierarchies, we explore applications to hierarchy discovery in data. Results show that HyperSteiner infers more realistic hierarchies than the Minimum Spanning Tree and is more scalable to large datasets than Neighbor Joining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信