OpenFGL:联合图学习的综合基准

Xunkai Li, Yinlin Zhu, Boyang Pang, Guochen Yan, Yeyu Yan, Zening Li, Zhengyu Wu, Wentao Zhang, Rong-Hua Li, Guoren Wang
{"title":"OpenFGL:联合图学习的综合基准","authors":"Xunkai Li, Yinlin Zhu, Boyang Pang, Guochen Yan, Yeyu Yan, Zening Li, Zhengyu Wu, Wentao Zhang, Rong-Hua Li, Guoren Wang","doi":"arxiv-2408.16288","DOIUrl":null,"url":null,"abstract":"Federated graph learning (FGL) has emerged as a promising distributed\ntraining paradigm for graph neural networks across multiple local systems\nwithout direct data sharing. This approach is particularly beneficial in\nprivacy-sensitive scenarios and offers a new perspective on addressing\nscalability challenges in large-scale graph learning. Despite the proliferation\nof FGL, the diverse motivations from practical applications, spanning various\nresearch backgrounds and experimental settings, pose a significant challenge to\nfair evaluation. To fill this gap, we propose OpenFGL, a unified benchmark\ndesigned for the primary FGL scenarios: Graph-FL and Subgraph-FL. Specifically,\nOpenFGL includes 38 graph datasets from 16 application domains, 8 federated\ndata simulation strategies that emphasize graph properties, and 5 graph-based\ndownstream tasks. Additionally, it offers 18 recently proposed SOTA FGL\nalgorithms through a user-friendly API, enabling a thorough comparison and\ncomprehensive evaluation of their effectiveness, robustness, and efficiency.\nEmpirical results demonstrate the ability of FGL while also revealing its\npotential limitations, offering valuable insights for future exploration in\nthis thriving field.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenFGL: A Comprehensive Benchmarks for Federated Graph Learning\",\"authors\":\"Xunkai Li, Yinlin Zhu, Boyang Pang, Guochen Yan, Yeyu Yan, Zening Li, Zhengyu Wu, Wentao Zhang, Rong-Hua Li, Guoren Wang\",\"doi\":\"arxiv-2408.16288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated graph learning (FGL) has emerged as a promising distributed\\ntraining paradigm for graph neural networks across multiple local systems\\nwithout direct data sharing. This approach is particularly beneficial in\\nprivacy-sensitive scenarios and offers a new perspective on addressing\\nscalability challenges in large-scale graph learning. Despite the proliferation\\nof FGL, the diverse motivations from practical applications, spanning various\\nresearch backgrounds and experimental settings, pose a significant challenge to\\nfair evaluation. To fill this gap, we propose OpenFGL, a unified benchmark\\ndesigned for the primary FGL scenarios: Graph-FL and Subgraph-FL. Specifically,\\nOpenFGL includes 38 graph datasets from 16 application domains, 8 federated\\ndata simulation strategies that emphasize graph properties, and 5 graph-based\\ndownstream tasks. Additionally, it offers 18 recently proposed SOTA FGL\\nalgorithms through a user-friendly API, enabling a thorough comparison and\\ncomprehensive evaluation of their effectiveness, robustness, and efficiency.\\nEmpirical results demonstrate the ability of FGL while also revealing its\\npotential limitations, offering valuable insights for future exploration in\\nthis thriving field.\",\"PeriodicalId\":501032,\"journal\":{\"name\":\"arXiv - CS - Social and Information Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Social and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联盟图学习(FGL)已成为一种前景广阔的分布式训练范例,可用于跨多个本地系统的图神经网络,而无需直接共享数据。这种方法尤其适用于对隐私敏感的场景,并为解决大规模图学习中的可伸缩性挑战提供了新的视角。尽管 FGL 的应用越来越广泛,但由于实际应用的动机各不相同,研究背景和实验环境也各不相同,这给公平评估带来了巨大挑战。为了填补这一空白,我们提出了 OpenFGL,这是一个针对主要 FGL 场景设计的统一基准:Graph-FL 和 Subgraph-FL。具体来说,OpenFGL 包括来自 16 个应用领域的 38 个图数据集、8 个强调图属性的联合数据仿真策略和 5 个基于图的下游任务。实证结果证明了 FGL 的能力,同时也揭示了其潜在的局限性,为这一蓬勃发展的领域的未来探索提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OpenFGL: A Comprehensive Benchmarks for Federated Graph Learning
Federated graph learning (FGL) has emerged as a promising distributed training paradigm for graph neural networks across multiple local systems without direct data sharing. This approach is particularly beneficial in privacy-sensitive scenarios and offers a new perspective on addressing scalability challenges in large-scale graph learning. Despite the proliferation of FGL, the diverse motivations from practical applications, spanning various research backgrounds and experimental settings, pose a significant challenge to fair evaluation. To fill this gap, we propose OpenFGL, a unified benchmark designed for the primary FGL scenarios: Graph-FL and Subgraph-FL. Specifically, OpenFGL includes 38 graph datasets from 16 application domains, 8 federated data simulation strategies that emphasize graph properties, and 5 graph-based downstream tasks. Additionally, it offers 18 recently proposed SOTA FGL algorithms through a user-friendly API, enabling a thorough comparison and comprehensive evaluation of their effectiveness, robustness, and efficiency. Empirical results demonstrate the ability of FGL while also revealing its potential limitations, offering valuable insights for future exploration in this thriving field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信