用里奇曲率描述医生转诊网络的特征

Jeremy Wayland, Russel J. Funk, Bastian Rieck
{"title":"用里奇曲率描述医生转诊网络的特征","authors":"Jeremy Wayland, Russel J. Funk, Bastian Rieck","doi":"arxiv-2408.16022","DOIUrl":null,"url":null,"abstract":"Identifying (a) systemic barriers to quality healthcare access and (b) key\nindicators of care efficacy in the United States remains a significant\nchallenge. To improve our understanding of regional disparities in care\ndelivery, we introduce a novel application of curvature, a\ngeometrical-topological property of networks, to Physician Referral Networks.\nOur initial findings reveal that Forman-Ricci and Ollivier-Ricci curvature\nmeasures, which are known for their expressive power in characterizing network\nstructure, offer promising indicators for detecting variations in healthcare\nefficacy while capturing a range of significant regional demographic features.\nWe also present APPARENT, an open-source tool that leverages Ricci curvature\nand other network features to examine correlations between regional Physician\nReferral Networks structure, local census data, healthcare effectiveness, and\npatient outcomes.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Physician Referral Networks with Ricci Curvature\",\"authors\":\"Jeremy Wayland, Russel J. Funk, Bastian Rieck\",\"doi\":\"arxiv-2408.16022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying (a) systemic barriers to quality healthcare access and (b) key\\nindicators of care efficacy in the United States remains a significant\\nchallenge. To improve our understanding of regional disparities in care\\ndelivery, we introduce a novel application of curvature, a\\ngeometrical-topological property of networks, to Physician Referral Networks.\\nOur initial findings reveal that Forman-Ricci and Ollivier-Ricci curvature\\nmeasures, which are known for their expressive power in characterizing network\\nstructure, offer promising indicators for detecting variations in healthcare\\nefficacy while capturing a range of significant regional demographic features.\\nWe also present APPARENT, an open-source tool that leverages Ricci curvature\\nand other network features to examine correlations between regional Physician\\nReferral Networks structure, local census data, healthcare effectiveness, and\\npatient outcomes.\",\"PeriodicalId\":501032,\"journal\":{\"name\":\"arXiv - CS - Social and Information Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Social and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在美国,识别(a)优质医疗服务的系统性障碍和(b)医疗效果的关键指标仍然是一项重大挑战。我们的初步研究结果表明,Forman-Ricci 和 Ollivier-Ricci 曲率度量因其在表征网络结构方面的表现力而闻名,它们为检测医疗保健效率的变化提供了有前途的指标,同时还捕捉到了一系列重要的地区人口特征。我们还介绍了 APPARENT,这是一款开源工具,它利用利玛窦曲率和其他网络特征来研究地区医生转诊网络结构、当地人口普查数据、医疗保健效果和患者预后之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Physician Referral Networks with Ricci Curvature
Identifying (a) systemic barriers to quality healthcare access and (b) key indicators of care efficacy in the United States remains a significant challenge. To improve our understanding of regional disparities in care delivery, we introduce a novel application of curvature, a geometrical-topological property of networks, to Physician Referral Networks. Our initial findings reveal that Forman-Ricci and Ollivier-Ricci curvature measures, which are known for their expressive power in characterizing network structure, offer promising indicators for detecting variations in healthcare efficacy while capturing a range of significant regional demographic features. We also present APPARENT, an open-source tool that leverages Ricci curvature and other network features to examine correlations between regional Physician Referral Networks structure, local census data, healthcare effectiveness, and patient outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信