最小移动距离和开局成本目标覆盖问题的近似算法

Lei Zhao, Zhao Zhang
{"title":"最小移动距离和开局成本目标覆盖问题的近似算法","authors":"Lei Zhao, Zhao Zhang","doi":"arxiv-2408.13797","DOIUrl":null,"url":null,"abstract":"In this paper, we study the Minimum Sum of Moving-Distance and Opening-Costs\nTarget Coverage problem (MinMD$+$OCTC). Given a set of targets and a set of\nbase stations on the plane, an opening cost function for every base station,\nthe opened base stations can emit mobile sensors with a radius of $r$ from base\nstation to cover the targets. The goal of MinMD$+$OCTC is to cover all the\ntargets and minimize the sum of the opening cost and the moving distance of\nmobile sensors. We give the optimal solution in polynomial time for the\nMinMD$+$OCTC problem with targets on a straight line, and present a 8.928\napproximation algorithm for a special case of the MinMD$+$OCTC problem with the\ntargets on the plane.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation Algorithms for Minimum Sum of Moving-Distance and Opening-Costs Target Coverage Problem\",\"authors\":\"Lei Zhao, Zhao Zhang\",\"doi\":\"arxiv-2408.13797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the Minimum Sum of Moving-Distance and Opening-Costs\\nTarget Coverage problem (MinMD$+$OCTC). Given a set of targets and a set of\\nbase stations on the plane, an opening cost function for every base station,\\nthe opened base stations can emit mobile sensors with a radius of $r$ from base\\nstation to cover the targets. The goal of MinMD$+$OCTC is to cover all the\\ntargets and minimize the sum of the opening cost and the moving distance of\\nmobile sensors. We give the optimal solution in polynomial time for the\\nMinMD$+$OCTC problem with targets on a straight line, and present a 8.928\\napproximation algorithm for a special case of the MinMD$+$OCTC problem with the\\ntargets on the plane.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是移动距离与开放成本之和最小的目标覆盖问题(MinMD$+$OCTC)。给定平面上的一组目标和一组基站,每个基站有一个开放成本函数,开放的基站可以从基站发射半径为 $r$ 的移动传感器来覆盖目标。MinMD$+$OCTC 的目标是覆盖所有目标,并使开放成本与移动传感器移动距离之和最小。我们在多项式时间内给出了目标在直线上的 MinMD$+$OCTC 问题的最优解,并给出了目标在平面上的 MinMD$+$OCTC 问题特例的 8.928 近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Algorithms for Minimum Sum of Moving-Distance and Opening-Costs Target Coverage Problem
In this paper, we study the Minimum Sum of Moving-Distance and Opening-Costs Target Coverage problem (MinMD$+$OCTC). Given a set of targets and a set of base stations on the plane, an opening cost function for every base station, the opened base stations can emit mobile sensors with a radius of $r$ from base station to cover the targets. The goal of MinMD$+$OCTC is to cover all the targets and minimize the sum of the opening cost and the moving distance of mobile sensors. We give the optimal solution in polynomial time for the MinMD$+$OCTC problem with targets on a straight line, and present a 8.928 approximation algorithm for a special case of the MinMD$+$OCTC problem with the targets on the plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信