锚定多观察者航线的近似算法

Joseph S. B. Mitchell, Linh Nguyen
{"title":"锚定多观察者航线的近似算法","authors":"Joseph S. B. Mitchell, Linh Nguyen","doi":"arxiv-2408.17343","DOIUrl":null,"url":null,"abstract":"We study some variants of the $k$-\\textsc{Watchman Routes} problem, the\ncooperative version of the classic \\textsc{Watchman Routes} problem in a simple\npolygon. The watchmen may be required to see the whole polygon, or some\npre-determined quota of area within the polygon, and we want to minimize the\nmaximum length traveled by any watchman. While the single watchman version of\nthe problem has received much attention is rather well understood, it is not\nthe case for multiple watchmen version. We provide the first tight approximability results for the anchored\n$k$-\\textsc{Watchman Routes} problem in a simple polygon, assuming $k$ is\nfixed, by a fully-polynomial time approximation scheme. The basis for the FPTAS\nis provided by an exact dynamic programming algorithm. If $k$ is a variable, we\ngive constant-factor approximations.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation Algorithms for Anchored Multiwatchman Routes\",\"authors\":\"Joseph S. B. Mitchell, Linh Nguyen\",\"doi\":\"arxiv-2408.17343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study some variants of the $k$-\\\\textsc{Watchman Routes} problem, the\\ncooperative version of the classic \\\\textsc{Watchman Routes} problem in a simple\\npolygon. The watchmen may be required to see the whole polygon, or some\\npre-determined quota of area within the polygon, and we want to minimize the\\nmaximum length traveled by any watchman. While the single watchman version of\\nthe problem has received much attention is rather well understood, it is not\\nthe case for multiple watchmen version. We provide the first tight approximability results for the anchored\\n$k$-\\\\textsc{Watchman Routes} problem in a simple polygon, assuming $k$ is\\nfixed, by a fully-polynomial time approximation scheme. The basis for the FPTAS\\nis provided by an exact dynamic programming algorithm. If $k$ is a variable, we\\ngive constant-factor approximations.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 $k$-textsc{Watchman Routes} 问题的一些变体,它是简单多边形中经典 \textsc{Watchman Routes} 问题的合作版本。守望者可能需要看到整个多边形,或者多边形内某个预先确定的区域,我们希望最小化任何一个守望者所走过的最大长度。虽然单个看守人版本的问题已经得到了广泛的关注和深入的理解,但多个看守人版本的问题却并非如此。我们通过全多项式时间近似方案,首次给出了简单多边形中锚定 $k$-textsc{Watchman Routes} 问题(假设 $k$ 是固定的)的严格近似结果。精确动态编程算法为 FPTAS 提供了基础。如果 $k$ 是变量,我们会给出常数因子近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation Algorithms for Anchored Multiwatchman Routes
We study some variants of the $k$-\textsc{Watchman Routes} problem, the cooperative version of the classic \textsc{Watchman Routes} problem in a simple polygon. The watchmen may be required to see the whole polygon, or some pre-determined quota of area within the polygon, and we want to minimize the maximum length traveled by any watchman. While the single watchman version of the problem has received much attention is rather well understood, it is not the case for multiple watchmen version. We provide the first tight approximability results for the anchored $k$-\textsc{Watchman Routes} problem in a simple polygon, assuming $k$ is fixed, by a fully-polynomial time approximation scheme. The basis for the FPTAS is provided by an exact dynamic programming algorithm. If $k$ is a variable, we give constant-factor approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信