通过图类实现互不相容

Oswin Aichholzer, Julia Obmann, Pavel Paták, Daniel Perz, Josef Tkadlec, Birgit Vogtenhuber
{"title":"通过图类实现互不相容","authors":"Oswin Aichholzer, Julia Obmann, Pavel Paták, Daniel Perz, Josef Tkadlec, Birgit Vogtenhuber","doi":"arxiv-2409.03579","DOIUrl":null,"url":null,"abstract":"Two plane drawings of graphs on the same set of points are called disjoint\ncompatible if their union is plane and they do not have an edge in common. Let\n$S$ be a convex point set of $2n \\geq 10$ points and let $\\mathcal{H}$ be a\nfamily of plane drawings on $S$. Two plane perfect matchings $M_1$ and $M_2$ on\n$S$ (which do not need to be disjoint nor compatible) are \\emph{disjoint\n$\\mathcal{H}$-compatible} if there exists a drawing in $\\mathcal{H}$ which is\ndisjoint compatible to both $M_1$ and $M_2$ In this work, we consider the graph\nwhich has all plane perfect matchings as vertices and where two vertices are\nconnected by an edge if the matchings are disjoint $\\mathcal{H}$-compatible. We\nstudy the diameter of this graph when $\\mathcal{H}$ is the family of all plane\nspanning trees, caterpillars or paths. We show that in the first two cases the\ngraph is connected with constant and linear diameter, respectively, while in\nthe third case it is disconnected.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disjoint Compatibility via Graph Classes\",\"authors\":\"Oswin Aichholzer, Julia Obmann, Pavel Paták, Daniel Perz, Josef Tkadlec, Birgit Vogtenhuber\",\"doi\":\"arxiv-2409.03579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two plane drawings of graphs on the same set of points are called disjoint\\ncompatible if their union is plane and they do not have an edge in common. Let\\n$S$ be a convex point set of $2n \\\\geq 10$ points and let $\\\\mathcal{H}$ be a\\nfamily of plane drawings on $S$. Two plane perfect matchings $M_1$ and $M_2$ on\\n$S$ (which do not need to be disjoint nor compatible) are \\\\emph{disjoint\\n$\\\\mathcal{H}$-compatible} if there exists a drawing in $\\\\mathcal{H}$ which is\\ndisjoint compatible to both $M_1$ and $M_2$ In this work, we consider the graph\\nwhich has all plane perfect matchings as vertices and where two vertices are\\nconnected by an edge if the matchings are disjoint $\\\\mathcal{H}$-compatible. We\\nstudy the diameter of this graph when $\\\\mathcal{H}$ is the family of all plane\\nspanning trees, caterpillars or paths. We show that in the first two cases the\\ngraph is connected with constant and linear diameter, respectively, while in\\nthe third case it is disconnected.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果在同一个点集合上的两个平面图形的结合是平面的,并且它们没有共同的边,那么这两个平面图形称为不相容的平面图形。设$S$是一个由$2n \geq 10$个点组成的凸点集,并设$mathcal{H}$是$S$上的平面图族。如果在 $mathcal{H}$ 中存在一个与 $M_1$ 和 $M_2$ 都不相交的图形,那么 $mathcal{H}$ 上的两个平面完全匹配图形 $M_1$ 和 $M_2$(它们不需要不相交也不兼容)就是 \emph{disjoint$mathcal{H}$-compatible} 、在这项工作中,我们考虑这样一个图,它以所有平面完美匹配为顶点,如果匹配是不相交的 $\mathcal{H}$ 兼容,则两个顶点由一条边连接。当 $mathcal{H}$ 是所有平面树、毛毛虫或路径的族时,我们研究了这个图的直径。我们证明,在前两种情况下,该图分别以恒定直径和线性直径相连,而在第三种情况下,它是断开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disjoint Compatibility via Graph Classes
Two plane drawings of graphs on the same set of points are called disjoint compatible if their union is plane and they do not have an edge in common. Let $S$ be a convex point set of $2n \geq 10$ points and let $\mathcal{H}$ be a family of plane drawings on $S$. Two plane perfect matchings $M_1$ and $M_2$ on $S$ (which do not need to be disjoint nor compatible) are \emph{disjoint $\mathcal{H}$-compatible} if there exists a drawing in $\mathcal{H}$ which is disjoint compatible to both $M_1$ and $M_2$ In this work, we consider the graph which has all plane perfect matchings as vertices and where two vertices are connected by an edge if the matchings are disjoint $\mathcal{H}$-compatible. We study the diameter of this graph when $\mathcal{H}$ is the family of all plane spanning trees, caterpillars or paths. We show that in the first two cases the graph is connected with constant and linear diameter, respectively, while in the third case it is disconnected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信