{"title":"制造用于油水分离的超亲水膜:生命周期评估研究","authors":"Junjie, Shen, Dixit V, Bhalani, Qian, Zhang, Yi, Yang, Suresh Kumar, Jewrajka","doi":"10.26434/chemrxiv-2024-c9w7l","DOIUrl":null,"url":null,"abstract":"Membrane-based technologies are widely used in oily wastewater treatment. This study selects two superhydrophilic ultrafiltration (UF) membranes (denoted M1 and M2) for oil-in-water emulsion separation and evaluates the environmental impact of membrane fabrication using life cycle assessment (LCA). Although the two membranes have similar separation performance, M1 exhibits ~40% lower environmental impacts than M2 in almost every category owing to its fewer modification steps, lower electricity use, and less solvent consumption. Electricity consumption, reactive-copolymer synthesis, and toxic-solvent use are identified as environmental hotspots in membrane fabrication. A sensitivity analysis of different energy sources reveals that coal-based electricity has the greatest environmental impact, while photovoltaic energy reduces the impact by up to 71%. Considering solvents, dimethylformamide (DMF) shows a slightly lower environmental impact than N-methyl-2-pyrrolidone (NMP).","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of superhydrophilic membranes for oil-water separation: A life cycle assessment study\",\"authors\":\"Junjie, Shen, Dixit V, Bhalani, Qian, Zhang, Yi, Yang, Suresh Kumar, Jewrajka\",\"doi\":\"10.26434/chemrxiv-2024-c9w7l\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane-based technologies are widely used in oily wastewater treatment. This study selects two superhydrophilic ultrafiltration (UF) membranes (denoted M1 and M2) for oil-in-water emulsion separation and evaluates the environmental impact of membrane fabrication using life cycle assessment (LCA). Although the two membranes have similar separation performance, M1 exhibits ~40% lower environmental impacts than M2 in almost every category owing to its fewer modification steps, lower electricity use, and less solvent consumption. Electricity consumption, reactive-copolymer synthesis, and toxic-solvent use are identified as environmental hotspots in membrane fabrication. A sensitivity analysis of different energy sources reveals that coal-based electricity has the greatest environmental impact, while photovoltaic energy reduces the impact by up to 71%. Considering solvents, dimethylformamide (DMF) shows a slightly lower environmental impact than N-methyl-2-pyrrolidone (NMP).\",\"PeriodicalId\":9813,\"journal\":{\"name\":\"ChemRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26434/chemrxiv-2024-c9w7l\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-c9w7l","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of superhydrophilic membranes for oil-water separation: A life cycle assessment study
Membrane-based technologies are widely used in oily wastewater treatment. This study selects two superhydrophilic ultrafiltration (UF) membranes (denoted M1 and M2) for oil-in-water emulsion separation and evaluates the environmental impact of membrane fabrication using life cycle assessment (LCA). Although the two membranes have similar separation performance, M1 exhibits ~40% lower environmental impacts than M2 in almost every category owing to its fewer modification steps, lower electricity use, and less solvent consumption. Electricity consumption, reactive-copolymer synthesis, and toxic-solvent use are identified as environmental hotspots in membrane fabrication. A sensitivity analysis of different energy sources reveals that coal-based electricity has the greatest environmental impact, while photovoltaic energy reduces the impact by up to 71%. Considering solvents, dimethylformamide (DMF) shows a slightly lower environmental impact than N-methyl-2-pyrrolidone (NMP).