什么是正常?匿名互联网流量的大数据观察科学模型

Jeremy Kepner, Hayden Jananthan, Michael Jones, William Arcand, David Bestor, William Bergeron, Daniel Burrill, Aydin Buluc, Chansup Byun, Timothy Davis, Vijay Gadepally, Daniel Grant, Michael Houle, Matthew Hubbell, Piotr Luszczek, Lauren Milechin, Chasen Milner, Guillermo Morales, Andrew Morris, Julie Mullen, Ritesh Patel, Alex Pentland, Sandeep Pisharody, Andrew Prout, Albert Reuther, Antonio Rosa, Gabriel Wachman, Charles Yee, Peter Michaleas
{"title":"什么是正常?匿名互联网流量的大数据观察科学模型","authors":"Jeremy Kepner, Hayden Jananthan, Michael Jones, William Arcand, David Bestor, William Bergeron, Daniel Burrill, Aydin Buluc, Chansup Byun, Timothy Davis, Vijay Gadepally, Daniel Grant, Michael Houle, Matthew Hubbell, Piotr Luszczek, Lauren Milechin, Chasen Milner, Guillermo Morales, Andrew Morris, Julie Mullen, Ritesh Patel, Alex Pentland, Sandeep Pisharody, Andrew Prout, Albert Reuther, Antonio Rosa, Gabriel Wachman, Charles Yee, Peter Michaleas","doi":"arxiv-2409.03111","DOIUrl":null,"url":null,"abstract":"Understanding what is normal is a key aspect of protecting a domain. Other\ndomains invest heavily in observational science to develop models of normal\nbehavior to better detect anomalies. Recent advances in high performance graph\nlibraries, such as the GraphBLAS, coupled with supercomputers enables\nprocessing of the trillions of observations required. We leverage this approach\nto synthesize low-parameter observational models of anonymized Internet traffic\nwith a high regard for privacy.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is Normal? A Big Data Observational Science Model of Anonymized Internet Traffic\",\"authors\":\"Jeremy Kepner, Hayden Jananthan, Michael Jones, William Arcand, David Bestor, William Bergeron, Daniel Burrill, Aydin Buluc, Chansup Byun, Timothy Davis, Vijay Gadepally, Daniel Grant, Michael Houle, Matthew Hubbell, Piotr Luszczek, Lauren Milechin, Chasen Milner, Guillermo Morales, Andrew Morris, Julie Mullen, Ritesh Patel, Alex Pentland, Sandeep Pisharody, Andrew Prout, Albert Reuther, Antonio Rosa, Gabriel Wachman, Charles Yee, Peter Michaleas\",\"doi\":\"arxiv-2409.03111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding what is normal is a key aspect of protecting a domain. Other\\ndomains invest heavily in observational science to develop models of normal\\nbehavior to better detect anomalies. Recent advances in high performance graph\\nlibraries, such as the GraphBLAS, coupled with supercomputers enables\\nprocessing of the trillions of observations required. We leverage this approach\\nto synthesize low-parameter observational models of anonymized Internet traffic\\nwith a high regard for privacy.\",\"PeriodicalId\":501032,\"journal\":{\"name\":\"arXiv - CS - Social and Information Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Social and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解什么是正常行为是保护域的一个关键方面。其他域在观测科学方面投入了大量资金,以开发正常行为模型,从而更好地检测异常情况。高性能图形库(如 GraphBLAS)的最新进展与超级计算机相结合,可以处理所需的数万亿观测数据。我们利用这种方法合成了匿名互联网流量的低参数观测模型,并高度关注隐私问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What is Normal? A Big Data Observational Science Model of Anonymized Internet Traffic
Understanding what is normal is a key aspect of protecting a domain. Other domains invest heavily in observational science to develop models of normal behavior to better detect anomalies. Recent advances in high performance graph libraries, such as the GraphBLAS, coupled with supercomputers enables processing of the trillions of observations required. We leverage this approach to synthesize low-parameter observational models of anonymized Internet traffic with a high regard for privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信