Jia-Bao Ji, Anatoli S Kheifets, Meng Han, Kiyoshi Ueda and Hans Jakob Wörner
{"title":"光电离截面与阿秒时间延迟之间的关系","authors":"Jia-Bao Ji, Anatoli S Kheifets, Meng Han, Kiyoshi Ueda and Hans Jakob Wörner","doi":"10.1088/1367-2630/ad7633","DOIUrl":null,"url":null,"abstract":"Determination and interpretation of Wigner-like photoionisation delays is one of the most active fields of attosecond science. Previous results have suggested that large photoionisation delays are associated with structured continua, but a quantitative relation between photoionisation cross sections and time delays has been missing. Here, we derive a Kramers–Kronig-like relation between these quantities and demonstrate its validity for (anti)resonances. This new concept defines a topological analysis, which rationalises the sign of photoionisation delays and thereby sheds new light on a long-standing controversy regarding the sign of the photoionisation delay near the Ar 3s Cooper minimum. Our work bridges traditional photoionisation spectroscopy with attosecond chronoscopy and offers new methods for analysing and interpreting photoionisation delays.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"59 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation between photoionisation cross sections and attosecond time delays\",\"authors\":\"Jia-Bao Ji, Anatoli S Kheifets, Meng Han, Kiyoshi Ueda and Hans Jakob Wörner\",\"doi\":\"10.1088/1367-2630/ad7633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determination and interpretation of Wigner-like photoionisation delays is one of the most active fields of attosecond science. Previous results have suggested that large photoionisation delays are associated with structured continua, but a quantitative relation between photoionisation cross sections and time delays has been missing. Here, we derive a Kramers–Kronig-like relation between these quantities and demonstrate its validity for (anti)resonances. This new concept defines a topological analysis, which rationalises the sign of photoionisation delays and thereby sheds new light on a long-standing controversy regarding the sign of the photoionisation delay near the Ar 3s Cooper minimum. Our work bridges traditional photoionisation spectroscopy with attosecond chronoscopy and offers new methods for analysing and interpreting photoionisation delays.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad7633\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad7633","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
维格纳类光电离延迟的测定和解释是阿秒科学最活跃的领域之一。之前的研究结果表明,大的光电离延迟与结构连续体有关,但光电离截面与时间延迟之间的定量关系一直缺失。在这里,我们推导出了这些量之间类似于克拉默-克罗尼格的关系,并证明了其(反)共振的有效性。这一新概念定义了一种拓扑分析,它合理地解释了光电离延迟的符号,从而为有关 Ar 3s 库珀最小值附近光电离延迟符号的长期争议带来了新的启示。我们的研究工作将传统的光电离光谱学与阿秒计时学结合起来,为分析和解释光电离延迟提供了新方法。
Relation between photoionisation cross sections and attosecond time delays
Determination and interpretation of Wigner-like photoionisation delays is one of the most active fields of attosecond science. Previous results have suggested that large photoionisation delays are associated with structured continua, but a quantitative relation between photoionisation cross sections and time delays has been missing. Here, we derive a Kramers–Kronig-like relation between these quantities and demonstrate its validity for (anti)resonances. This new concept defines a topological analysis, which rationalises the sign of photoionisation delays and thereby sheds new light on a long-standing controversy regarding the sign of the photoionisation delay near the Ar 3s Cooper minimum. Our work bridges traditional photoionisation spectroscopy with attosecond chronoscopy and offers new methods for analysing and interpreting photoionisation delays.
期刊介绍:
New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.