铁磁共振中磁化前冲的大角度解析解

IF 2.8 2区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Zhen-Lin Jia, Shu-Chen Wang, Tong Li, Xiao-Wei Jin and De-Sheng Xue
{"title":"铁磁共振中磁化前冲的大角度解析解","authors":"Zhen-Lin Jia, Shu-Chen Wang, Tong Li, Xiao-Wei Jin and De-Sheng Xue","doi":"10.1088/1367-2630/ad7632","DOIUrl":null,"url":null,"abstract":"Dynamics of magnetization M driven by microwave are derived analytically from the nonlinear Landau–Lifshitz–Gilbert equation. Analytical M and susceptibility are obtained self-consistently under a positive circularly polarized microwave field, , with frequency , which is perpendicular to a static field, . It is found that the orbital of M is always a cone along H. However, with increasing h the polar angle of M initially increases, then keeps 90° when in ferromagnetic resonance (FMR) mode, where is Gilbert damping constant and is gyromagnetic ratio. These effects result in a nonlinear variation of FMR signal as h increases to , where the maximum of resonance peak decreases from a steady value, linewidth increases from a decreasing trend. These analytical solutions provide a complete picture of the dynamics of M with different h and H.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-angle analytical solution of magnetization precession in ferromagnetic resonance\",\"authors\":\"Zhen-Lin Jia, Shu-Chen Wang, Tong Li, Xiao-Wei Jin and De-Sheng Xue\",\"doi\":\"10.1088/1367-2630/ad7632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamics of magnetization M driven by microwave are derived analytically from the nonlinear Landau–Lifshitz–Gilbert equation. Analytical M and susceptibility are obtained self-consistently under a positive circularly polarized microwave field, , with frequency , which is perpendicular to a static field, . It is found that the orbital of M is always a cone along H. However, with increasing h the polar angle of M initially increases, then keeps 90° when in ferromagnetic resonance (FMR) mode, where is Gilbert damping constant and is gyromagnetic ratio. These effects result in a nonlinear variation of FMR signal as h increases to , where the maximum of resonance peak decreases from a steady value, linewidth increases from a decreasing trend. These analytical solutions provide a complete picture of the dynamics of M with different h and H.\",\"PeriodicalId\":19181,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad7632\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad7632","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从非线性 Landau-Lifshitz-Gilbert 方程分析得出微波驱动的磁化 M 的动力学。在正圆极化微波场(频率为 ,垂直于静态场(H))下,自洽地得到了分析磁化率和磁感应强度。 然而,随着 h 的增大,磁化率的极角开始增大,然后在铁磁共振(FMR)模式下保持 90°,其中吉尔伯特阻尼常数为 ,回旋磁比为 。这些效应导致 FMR 信号随着 h 的增大呈非线性变化,共振峰的最大值从稳定值减小,线宽从减小趋势增大。这些分析解提供了不同 h 和 H 时 M 的动态全貌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-angle analytical solution of magnetization precession in ferromagnetic resonance
Dynamics of magnetization M driven by microwave are derived analytically from the nonlinear Landau–Lifshitz–Gilbert equation. Analytical M and susceptibility are obtained self-consistently under a positive circularly polarized microwave field, , with frequency , which is perpendicular to a static field, . It is found that the orbital of M is always a cone along H. However, with increasing h the polar angle of M initially increases, then keeps 90° when in ferromagnetic resonance (FMR) mode, where is Gilbert damping constant and is gyromagnetic ratio. These effects result in a nonlinear variation of FMR signal as h increases to , where the maximum of resonance peak decreases from a steady value, linewidth increases from a decreasing trend. These analytical solutions provide a complete picture of the dynamics of M with different h and H.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Physics
New Journal of Physics 物理-物理:综合
CiteScore
6.20
自引率
3.00%
发文量
504
审稿时长
3.1 months
期刊介绍: New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信