几种复变量中一类全态映射的广义托普利兹决定因素

Pub Date : 2024-08-19 DOI:10.1007/s11785-024-01585-3
Qinghua Xu, Ting Jiang
{"title":"几种复变量中一类全态映射的广义托普利兹决定因素","authors":"Qinghua Xu, Ting Jiang","doi":"10.1007/s11785-024-01585-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we define the generalized Toeplitz determinants whose entries are the coefficients of holomorphic functions on the unit disk <span>\\(\\mathbb {U}\\)</span> with <i>k</i>-fold symmetric, and then we establish the sharp bounds of the generalized determinants formed over the related terms of homogeneous expansion of a class of holomorphic mappings defined on the unit ball of a complex Banach space. The results presented here would generalize the corresponding results given by Giri and Kumar (Complex Anal Oper Theory 17(6):86, 2023).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Generalized Toeplitz Determinants for a Class of Holomorphic Mappings in Several Complex Variables\",\"authors\":\"Qinghua Xu, Ting Jiang\",\"doi\":\"10.1007/s11785-024-01585-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we define the generalized Toeplitz determinants whose entries are the coefficients of holomorphic functions on the unit disk <span>\\\\(\\\\mathbb {U}\\\\)</span> with <i>k</i>-fold symmetric, and then we establish the sharp bounds of the generalized determinants formed over the related terms of homogeneous expansion of a class of holomorphic mappings defined on the unit ball of a complex Banach space. The results presented here would generalize the corresponding results given by Giri and Kumar (Complex Anal Oper Theory 17(6):86, 2023).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01585-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01585-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了广义托普利兹行列式,其项是具有 k 倍对称性的单位盘 \(\mathbb {U}\) 上全形函数的系数,然后建立了定义在复巴纳赫空间单位球上的一类全形映射的同次展开的相关项所形成的广义行列式的尖锐边界。这里提出的结果将概括吉里和库马尔(Complex Anal Oper Theory 17(6):86, 2023)给出的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Generalized Toeplitz Determinants for a Class of Holomorphic Mappings in Several Complex Variables

In this paper, we define the generalized Toeplitz determinants whose entries are the coefficients of holomorphic functions on the unit disk \(\mathbb {U}\) with k-fold symmetric, and then we establish the sharp bounds of the generalized determinants formed over the related terms of homogeneous expansion of a class of holomorphic mappings defined on the unit ball of a complex Banach space. The results presented here would generalize the corresponding results given by Giri and Kumar (Complex Anal Oper Theory 17(6):86, 2023).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信