扩展的球面阿鲁什变换联合数值半径

IF 0.7 4区 数学 Q2 MATHEMATICS
Bouchra Aharmim, Yassine Labbane
{"title":"扩展的球面阿鲁什变换联合数值半径","authors":"Bouchra Aharmim, Yassine Labbane","doi":"10.1007/s11785-024-01583-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(T=(T_{1}, T_{2},\\ldots , T_{n})\\)</span> be a commuting <span>\\(n-\\)</span>tuple of operators on a complex Hilbert space <i>H</i>. We define the extended joint numerical radius of <i>T</i> by </p><span>$$\\begin{aligned} J_{t}w_{(N, v)}(T)=\\sup \\limits _{(\\lambda _{1}, \\lambda _{2}, \\ldots , \\lambda _{n})\\in \\overline{B_{n}}(0, 1)}w_{(N, v)}\\bigg (\\sum \\limits _{i=1}^{n}\\lambda _{i}T_{i}\\bigg ), \\end{aligned}$$</span><p>where <i>N</i> is any norm on <i>B</i>(<i>H</i>), </p><span>$$w_{(N, v)}(S)=\\sup \\limits _{\\theta \\in \\mathbb {R}}N(ve^{i\\theta }S+(1-v)e^{-i\\theta }S^{*}), S\\in B(H), v\\in [0, 1],$$</span><p>and <span>\\(\\overline{B_{n}}(0, 1)\\)</span> denotes the closure of the unit ball in <span>\\(\\mathbb {C}^{n}\\)</span> with respect to the euclidean norm, i.e. </p><span>$$\\overline{B_{n}}(0, 1)=\\left\\{ \\lambda =(\\lambda _{1}, \\ldots , \\lambda _{n})\\in \\mathbb {C}^{n}; \\parallel \\lambda \\parallel _{2}=\\bigg (\\sum \\limits _{i=1}^{n}|\\lambda _{i}|^{2}\\bigg )^{\\frac{1}{2}}\\le 1 \\right\\} .$$</span><p>In this paper, we prove several inequalities for the extended joint numerical radius involving the spherical Aluthge transform in the case where <i>N</i> is the operator norm of <i>B</i>(<i>H</i>) or the numerical radius.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Joint Numerical Radius of the Spherical Aluthge Transform\",\"authors\":\"Bouchra Aharmim, Yassine Labbane\",\"doi\":\"10.1007/s11785-024-01583-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(T=(T_{1}, T_{2},\\\\ldots , T_{n})\\\\)</span> be a commuting <span>\\\\(n-\\\\)</span>tuple of operators on a complex Hilbert space <i>H</i>. We define the extended joint numerical radius of <i>T</i> by </p><span>$$\\\\begin{aligned} J_{t}w_{(N, v)}(T)=\\\\sup \\\\limits _{(\\\\lambda _{1}, \\\\lambda _{2}, \\\\ldots , \\\\lambda _{n})\\\\in \\\\overline{B_{n}}(0, 1)}w_{(N, v)}\\\\bigg (\\\\sum \\\\limits _{i=1}^{n}\\\\lambda _{i}T_{i}\\\\bigg ), \\\\end{aligned}$$</span><p>where <i>N</i> is any norm on <i>B</i>(<i>H</i>), </p><span>$$w_{(N, v)}(S)=\\\\sup \\\\limits _{\\\\theta \\\\in \\\\mathbb {R}}N(ve^{i\\\\theta }S+(1-v)e^{-i\\\\theta }S^{*}), S\\\\in B(H), v\\\\in [0, 1],$$</span><p>and <span>\\\\(\\\\overline{B_{n}}(0, 1)\\\\)</span> denotes the closure of the unit ball in <span>\\\\(\\\\mathbb {C}^{n}\\\\)</span> with respect to the euclidean norm, i.e. </p><span>$$\\\\overline{B_{n}}(0, 1)=\\\\left\\\\{ \\\\lambda =(\\\\lambda _{1}, \\\\ldots , \\\\lambda _{n})\\\\in \\\\mathbb {C}^{n}; \\\\parallel \\\\lambda \\\\parallel _{2}=\\\\bigg (\\\\sum \\\\limits _{i=1}^{n}|\\\\lambda _{i}|^{2}\\\\bigg )^{\\\\frac{1}{2}}\\\\le 1 \\\\right\\\\} .$$</span><p>In this paper, we prove several inequalities for the extended joint numerical radius involving the spherical Aluthge transform in the case where <i>N</i> is the operator norm of <i>B</i>(<i>H</i>) or the numerical radius.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01583-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01583-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让(T=(T_{1}, T_{2}, \ldots , T_{n}))是复希尔伯特空间 H 上的一个共交(n-\)算子元组。我们用 $$\begin{aligned} 来定义 T 的扩展联合数值半径。J_{t}w_{(N, v)}(T)=sup \limits _{(\lambda _{1}, \lambda _{2}, \ldots , \lambda _{n})\in \overline{B_{n}}(0, 1)}w_{(N、v)}\bigg (\sum \limits _{i=1}^{n}\lambda _{i}T_{i}\bigg ), \end{aligned}$$ 其中 N 是 B(H)上的任意规范,$$w_{(N、v)}(S)=sup \limits _\theta \in \mathbb {R}}N(ve^{i\theta }S+(1-v)e^{-i\theta }S^{*}), S\in B(H), v\in [0, 1]、$$and \(\overline{B_{n}}(0, 1)\) denotes the closure of the unit ball in \(\mathbb {C}^{n}\) with respect to the euclidean norm, i..e.$$\overline{B_{n}}(0, 1)=\left\{ \lambda =(\lambda _{1}, \ldots , \lambda _{n})\in \mathbb {C}^{n};\parallel \lambda \parallel _{2}=\bigg (\sum \limits _{i=1}^{n}|\lambda _{i}|^{2}\bigg )^{\frac{1}{2}}le 1 \right\} .$$在本文中,我们证明了在 N 是 B(H) 的算子规范或数值半径的情况下,涉及球面 Aluthge 变换的扩展联合数值半径的几个不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Joint Numerical Radius of the Spherical Aluthge Transform

Let \(T=(T_{1}, T_{2},\ldots , T_{n})\) be a commuting \(n-\)tuple of operators on a complex Hilbert space H. We define the extended joint numerical radius of T by

$$\begin{aligned} J_{t}w_{(N, v)}(T)=\sup \limits _{(\lambda _{1}, \lambda _{2}, \ldots , \lambda _{n})\in \overline{B_{n}}(0, 1)}w_{(N, v)}\bigg (\sum \limits _{i=1}^{n}\lambda _{i}T_{i}\bigg ), \end{aligned}$$

where N is any norm on B(H),

$$w_{(N, v)}(S)=\sup \limits _{\theta \in \mathbb {R}}N(ve^{i\theta }S+(1-v)e^{-i\theta }S^{*}), S\in B(H), v\in [0, 1],$$

and \(\overline{B_{n}}(0, 1)\) denotes the closure of the unit ball in \(\mathbb {C}^{n}\) with respect to the euclidean norm, i.e.

$$\overline{B_{n}}(0, 1)=\left\{ \lambda =(\lambda _{1}, \ldots , \lambda _{n})\in \mathbb {C}^{n}; \parallel \lambda \parallel _{2}=\bigg (\sum \limits _{i=1}^{n}|\lambda _{i}|^{2}\bigg )^{\frac{1}{2}}\le 1 \right\} .$$

In this paper, we prove several inequalities for the extended joint numerical radius involving the spherical Aluthge transform in the case where N is the operator norm of B(H) or the numerical radius.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信