冲击条件下石墨向六方金刚石的转化机制

JACS Au Pub Date : 2024-08-25 DOI:10.1021/jacsau.4c00523
Gu-Wen Chen, Sheng-Cai Zhu, Liang Xu, Yao-Min Li, Zhi-Pan Liu, Yanglong Hou, Ho-kwang Mao
{"title":"冲击条件下石墨向六方金刚石的转化机制","authors":"Gu-Wen Chen, Sheng-Cai Zhu, Liang Xu, Yao-Min Li, Zhi-Pan Liu, Yanglong Hou, Ho-kwang Mao","doi":"10.1021/jacsau.4c00523","DOIUrl":null,"url":null,"abstract":"The formation of a hexagonal diamond represents one of the most intriguing questions in materials science. Under shock conditions, the graphite basal plane tends to slide and pucker to form diamond. However, how the shock strength determines the phase selectivity remains unclear. In this work, using a DFT-trained carbon global neural network model, we studied the shock-induced graphite transition. The poor sliding caused by scarce sliding time under high-strength shock leads to metastable hexagonal diamond with an orientation relationship of (001)<sub>G</sub>//(100)<sub>HD</sub>+[010]<sub>G</sub>//[010]<sub>HD</sub>, while under low-strength shock due to long sliding distance cubic diamond forms with the orientation (001)<sub>G</sub>//(111)<sub>CD</sub>+[100]<sub>G</sub>//[110]<sub>CD</sub>, unveiling the strength-dependent graphite transition mechanism. We for the first time provide computational evidence of the strength-dependent graphite transition from first-principles, clarifying the long-term unresolved shock-induced hexagonal diamond formation mechanism and the structural source of the strength-dependent trend, which facilitates the hexagonal diamond synthesis via controlled experiment.","PeriodicalId":14799,"journal":{"name":"JACS Au","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Transformation Mechanism of Graphite to Hexagonal Diamond under Shock Conditions\",\"authors\":\"Gu-Wen Chen, Sheng-Cai Zhu, Liang Xu, Yao-Min Li, Zhi-Pan Liu, Yanglong Hou, Ho-kwang Mao\",\"doi\":\"10.1021/jacsau.4c00523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formation of a hexagonal diamond represents one of the most intriguing questions in materials science. Under shock conditions, the graphite basal plane tends to slide and pucker to form diamond. However, how the shock strength determines the phase selectivity remains unclear. In this work, using a DFT-trained carbon global neural network model, we studied the shock-induced graphite transition. The poor sliding caused by scarce sliding time under high-strength shock leads to metastable hexagonal diamond with an orientation relationship of (001)<sub>G</sub>//(100)<sub>HD</sub>+[010]<sub>G</sub>//[010]<sub>HD</sub>, while under low-strength shock due to long sliding distance cubic diamond forms with the orientation (001)<sub>G</sub>//(111)<sub>CD</sub>+[100]<sub>G</sub>//[110]<sub>CD</sub>, unveiling the strength-dependent graphite transition mechanism. We for the first time provide computational evidence of the strength-dependent graphite transition from first-principles, clarifying the long-term unresolved shock-induced hexagonal diamond formation mechanism and the structural source of the strength-dependent trend, which facilitates the hexagonal diamond synthesis via controlled experiment.\",\"PeriodicalId\":14799,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.4c00523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

六角形金刚石的形成是材料科学中最引人入胜的问题之一。在冲击条件下,石墨基面倾向于滑动和皱缩形成金刚石。然而,冲击强度如何决定相的选择性仍不清楚。在这项工作中,我们利用 DFT 训练的碳全局神经网络模型,研究了冲击诱导的石墨转变。在高强度冲击下,由于滑动时间短导致滑动效果差,形成了取向关系为(001)G//(100)HD+[010]G//[010]HD的六方金刚石,而在低强度冲击下,由于滑动距离长,形成了取向为(001)G//(111)CD+[100]G//[110]CD的立方金刚石,揭示了强度依赖性石墨转变机制。我们首次从第一原理上提供了强度依赖性石墨转变的计算证据,阐明了长期悬而未决的冲击诱导的六方金刚石形成机制和强度依赖性趋势的结构来源,这为通过控制实验合成六方金刚石提供了便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Transformation Mechanism of Graphite to Hexagonal Diamond under Shock Conditions

The Transformation Mechanism of Graphite to Hexagonal Diamond under Shock Conditions
The formation of a hexagonal diamond represents one of the most intriguing questions in materials science. Under shock conditions, the graphite basal plane tends to slide and pucker to form diamond. However, how the shock strength determines the phase selectivity remains unclear. In this work, using a DFT-trained carbon global neural network model, we studied the shock-induced graphite transition. The poor sliding caused by scarce sliding time under high-strength shock leads to metastable hexagonal diamond with an orientation relationship of (001)G//(100)HD+[010]G//[010]HD, while under low-strength shock due to long sliding distance cubic diamond forms with the orientation (001)G//(111)CD+[100]G//[110]CD, unveiling the strength-dependent graphite transition mechanism. We for the first time provide computational evidence of the strength-dependent graphite transition from first-principles, clarifying the long-term unresolved shock-induced hexagonal diamond formation mechanism and the structural source of the strength-dependent trend, which facilitates the hexagonal diamond synthesis via controlled experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信