大肠埃希氏菌厌氧细胞和木乃伊化细胞中的 DNA 结构

IF 1.4 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Yu. F. Krupyanskii, V. V. Kovalenko, N. G. Loiko, E. V. Tereshkin, K. B. Tereshkina, A. N. Popov
{"title":"大肠埃希氏菌厌氧细胞和木乃伊化细胞中的 DNA 结构","authors":"Yu. F. Krupyanskii,&nbsp;V. V. Kovalenko,&nbsp;N. G. Loiko,&nbsp;E. V. Tereshkin,&nbsp;K. B. Tereshkina,&nbsp;A. N. Popov","doi":"10.1134/S1990793124700441","DOIUrl":null,"url":null,"abstract":"<p>The structural organization of DNA in stressed (with increased stress resistance), anabiotic, and mummified cells obtained by introducing 4-hexylresorcinol in different concentrations at different stages of cell culture growth is studied using the synchrotron radiation diffraction technique. The experimental studies allow us to conclude that 4-hexylresorcinol is the initiator of the transition of cells into an anabiotic and mummified state in the stationary stage of growth. In the prestationary stage, in the studied concentration range, 4-hexylresorcinol initiates the transition of cells into a mummified state but not into an anabiotic state, which indicates that DNA is unprepared for the crystallization process in these bacteria. The structure of DNA inside a cell in an anabiotic dormant state (the almost complete absence of metabolism) and dormant state (starvation stress) coincide (form nanocrystalline structures). The data indicate the universality of DNA condensation or the universality of DNA protection by the Dps protein in the dormant state, regardless of the type of stress. The mummified state (the complete absence of metabolism, irreversible to life) is very different in structure (has no order within the cell).</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Structure of DNA in Anabiotic and Mummified Escherichia coli Cells\",\"authors\":\"Yu. F. Krupyanskii,&nbsp;V. V. Kovalenko,&nbsp;N. G. Loiko,&nbsp;E. V. Tereshkin,&nbsp;K. B. Tereshkina,&nbsp;A. N. Popov\",\"doi\":\"10.1134/S1990793124700441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The structural organization of DNA in stressed (with increased stress resistance), anabiotic, and mummified cells obtained by introducing 4-hexylresorcinol in different concentrations at different stages of cell culture growth is studied using the synchrotron radiation diffraction technique. The experimental studies allow us to conclude that 4-hexylresorcinol is the initiator of the transition of cells into an anabiotic and mummified state in the stationary stage of growth. In the prestationary stage, in the studied concentration range, 4-hexylresorcinol initiates the transition of cells into a mummified state but not into an anabiotic state, which indicates that DNA is unprepared for the crystallization process in these bacteria. The structure of DNA inside a cell in an anabiotic dormant state (the almost complete absence of metabolism) and dormant state (starvation stress) coincide (form nanocrystalline structures). The data indicate the universality of DNA condensation or the universality of DNA protection by the Dps protein in the dormant state, regardless of the type of stress. The mummified state (the complete absence of metabolism, irreversible to life) is very different in structure (has no order within the cell).</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793124700441\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124700441","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用同步辐射衍射技术研究了在细胞培养生长的不同阶段引入不同浓度的 4-己基间苯二酚所获得的受激细胞(抗应激能力增强)、厌氧细胞和木乃伊化细胞中 DNA 的结构组织。通过实验研究,我们得出结论:在细胞生长的静止阶段,4-己基间苯二酚是使细胞过渡到厌氧状态和木乃伊化状态的启动因子。在所研究的浓度范围内,4-己基间苯二酚能使细胞进入木乃伊化状态,但不能使细胞进入无代谢状态。处于无代谢休眠状态(几乎完全没有新陈代谢)和休眠状态(饥饿应激)的细胞内的 DNA 结构是一致的(形成纳米结晶结构)。这些数据表明,在休眠状态下,无论应激类型如何,DNA 的凝结或 DNA 受 Dps 蛋白保护具有普遍性。木乃伊状态(完全没有新陈代谢,对生命不可逆)的结构则截然不同(细胞内没有秩序)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Structure of DNA in Anabiotic and Mummified Escherichia coli Cells

The Structure of DNA in Anabiotic and Mummified Escherichia coli Cells

The Structure of DNA in Anabiotic and Mummified Escherichia coli Cells

The structural organization of DNA in stressed (with increased stress resistance), anabiotic, and mummified cells obtained by introducing 4-hexylresorcinol in different concentrations at different stages of cell culture growth is studied using the synchrotron radiation diffraction technique. The experimental studies allow us to conclude that 4-hexylresorcinol is the initiator of the transition of cells into an anabiotic and mummified state in the stationary stage of growth. In the prestationary stage, in the studied concentration range, 4-hexylresorcinol initiates the transition of cells into a mummified state but not into an anabiotic state, which indicates that DNA is unprepared for the crystallization process in these bacteria. The structure of DNA inside a cell in an anabiotic dormant state (the almost complete absence of metabolism) and dormant state (starvation stress) coincide (form nanocrystalline structures). The data indicate the universality of DNA condensation or the universality of DNA protection by the Dps protein in the dormant state, regardless of the type of stress. The mummified state (the complete absence of metabolism, irreversible to life) is very different in structure (has no order within the cell).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Physical Chemistry B
Russian Journal of Physical Chemistry B 化学-物理:原子、分子和化学物理
CiteScore
2.20
自引率
71.40%
发文量
106
审稿时长
4-8 weeks
期刊介绍: Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信