{"title":"辉光放电复杂等离子体中的离子约束效率","authors":"D. N. Polyakov, V. V. Shumova, L. M. Vasilyak","doi":"10.1134/S1990793124700635","DOIUrl":null,"url":null,"abstract":"<p>The parameters of the plasma of a low-pressure glow discharge in neon with microparticles, at which regions with equal values of the ion confinement efficiency in the cloud of microparticles are realized, are determined numerically. It is noted that such features are characteristic of dissipative synergetic systems controlled by the feedback. The simulation of a complex plasma of glow discharge in neon with microparticles shows that feedback in the plasma is realized through the source of the main losses of its energy—a cloud of microparticles. Controlling the discharge parameters by changing the concentration of microparticles in the cloud makes it possible to control the concentration of the ions in the plasma.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ion Confinement Efficiency in a Complex Plasma of Glow Discharge\",\"authors\":\"D. N. Polyakov, V. V. Shumova, L. M. Vasilyak\",\"doi\":\"10.1134/S1990793124700635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The parameters of the plasma of a low-pressure glow discharge in neon with microparticles, at which regions with equal values of the ion confinement efficiency in the cloud of microparticles are realized, are determined numerically. It is noted that such features are characteristic of dissipative synergetic systems controlled by the feedback. The simulation of a complex plasma of glow discharge in neon with microparticles shows that feedback in the plasma is realized through the source of the main losses of its energy—a cloud of microparticles. Controlling the discharge parameters by changing the concentration of microparticles in the cloud makes it possible to control the concentration of the ions in the plasma.</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793124700635\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124700635","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Ion Confinement Efficiency in a Complex Plasma of Glow Discharge
The parameters of the plasma of a low-pressure glow discharge in neon with microparticles, at which regions with equal values of the ion confinement efficiency in the cloud of microparticles are realized, are determined numerically. It is noted that such features are characteristic of dissipative synergetic systems controlled by the feedback. The simulation of a complex plasma of glow discharge in neon with microparticles shows that feedback in the plasma is realized through the source of the main losses of its energy—a cloud of microparticles. Controlling the discharge parameters by changing the concentration of microparticles in the cloud makes it possible to control the concentration of the ions in the plasma.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.