Yiwei Lu, Yujie Shi, Bin Chen, Zihao Feng, Jieming Hu
{"title":"花岗岩残积土的结构破坏特征和机理","authors":"Yiwei Lu, Yujie Shi, Bin Chen, Zihao Feng, Jieming Hu","doi":"10.1515/arh-2024-0011","DOIUrl":null,"url":null,"abstract":"Deep and thick weathered granite crusts widely distributed in Xiangdong area, Hunan Province, due to their special structure, often induce geological disasters such as landslides under the conditions of excavation or atmospheric precipitation. In this article, using the direct shear test, X-ray diffraction test and scanning electron microscope test, the mechanical properties and the response mechanism of the microstructure of the granite residual soil in eastern Hunan area under different states were studied, and the structural damage mechanism of the granite residual soil was analysed. Based on the comprehensive structural potential, the theory characterizes its structure. The results show that the granite residual soil is mainly composed of minerals such as quartz, mica, kaolinite and feldspar, and it also contains a small amount of chlorite and calcite. The damage is mainly reflected in the attenuation of cohesion, while the change of the internal friction angle is small. The microscopic manifestation is the failure of the bridging structure between the aggregates, and the inter-granular pores are interconnected. The difference and shear strength response reflect the susceptibility to disturbance of granite residual soil and reflect that the structural strength has been damaged under the disturbance of human factors.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":"118 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural damage characteristics and mechanism of granite residual soil\",\"authors\":\"Yiwei Lu, Yujie Shi, Bin Chen, Zihao Feng, Jieming Hu\",\"doi\":\"10.1515/arh-2024-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep and thick weathered granite crusts widely distributed in Xiangdong area, Hunan Province, due to their special structure, often induce geological disasters such as landslides under the conditions of excavation or atmospheric precipitation. In this article, using the direct shear test, X-ray diffraction test and scanning electron microscope test, the mechanical properties and the response mechanism of the microstructure of the granite residual soil in eastern Hunan area under different states were studied, and the structural damage mechanism of the granite residual soil was analysed. Based on the comprehensive structural potential, the theory characterizes its structure. The results show that the granite residual soil is mainly composed of minerals such as quartz, mica, kaolinite and feldspar, and it also contains a small amount of chlorite and calcite. The damage is mainly reflected in the attenuation of cohesion, while the change of the internal friction angle is small. The microscopic manifestation is the failure of the bridging structure between the aggregates, and the inter-granular pores are interconnected. The difference and shear strength response reflect the susceptibility to disturbance of granite residual soil and reflect that the structural strength has been damaged under the disturbance of human factors.\",\"PeriodicalId\":50738,\"journal\":{\"name\":\"Applied Rheology\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/arh-2024-0011\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2024-0011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Structural damage characteristics and mechanism of granite residual soil
Deep and thick weathered granite crusts widely distributed in Xiangdong area, Hunan Province, due to their special structure, often induce geological disasters such as landslides under the conditions of excavation or atmospheric precipitation. In this article, using the direct shear test, X-ray diffraction test and scanning electron microscope test, the mechanical properties and the response mechanism of the microstructure of the granite residual soil in eastern Hunan area under different states were studied, and the structural damage mechanism of the granite residual soil was analysed. Based on the comprehensive structural potential, the theory characterizes its structure. The results show that the granite residual soil is mainly composed of minerals such as quartz, mica, kaolinite and feldspar, and it also contains a small amount of chlorite and calcite. The damage is mainly reflected in the attenuation of cohesion, while the change of the internal friction angle is small. The microscopic manifestation is the failure of the bridging structure between the aggregates, and the inter-granular pores are interconnected. The difference and shear strength response reflect the susceptibility to disturbance of granite residual soil and reflect that the structural strength has been damaged under the disturbance of human factors.
期刊介绍:
Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.