{"title":"自动加权贝叶斯物理信息神经网络和多任务反问题的鲁棒估计,用于孔隙尺度溶解成像","authors":"Sarah Perez, Philippe Poncet","doi":"10.1007/s10596-024-10313-x","DOIUrl":null,"url":null,"abstract":"<p>In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes in the context of Carbon Capture and Storage (CCS). Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray <span>\\(\\mu \\)</span>CT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical <span>\\(\\mu \\)</span>CT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models, with a latent concentration field, and dynamical <span>\\(\\mu \\)</span>CT observations. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints and suitable formulation of the heterogeneous diffusion differential operator leading to enhanced computational efficiency. We provide a robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time calcite dissolution based on synthetic <span>\\(\\mu \\)</span>CT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers. We eventually apply this framework to a more realistic 2D+Time data assimilation problem involving heterogeneous porosity levels and synthetic <span>\\(\\mu \\)</span>CT dynamical observations.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"32 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution\",\"authors\":\"Sarah Perez, Philippe Poncet\",\"doi\":\"10.1007/s10596-024-10313-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes in the context of Carbon Capture and Storage (CCS). Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray <span>\\\\(\\\\mu \\\\)</span>CT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical <span>\\\\(\\\\mu \\\\)</span>CT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models, with a latent concentration field, and dynamical <span>\\\\(\\\\mu \\\\)</span>CT observations. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints and suitable formulation of the heterogeneous diffusion differential operator leading to enhanced computational efficiency. We provide a robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time calcite dissolution based on synthetic <span>\\\\(\\\\mu \\\\)</span>CT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers. We eventually apply this framework to a more realistic 2D+Time data assimilation problem involving heterogeneous porosity levels and synthetic <span>\\\\(\\\\mu \\\\)</span>CT dynamical observations.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-024-10313-x\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10313-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
In this article, we present a novel data assimilation strategy in pore-scale imaging and demonstrate that this makes it possible to robustly address reactive inverse problems incorporating Uncertainty Quantification (UQ). Pore-scale modeling of reactive flow offers a valuable opportunity to investigate the evolution of macro-scale properties subject to dynamic processes in the context of Carbon Capture and Storage (CCS). Yet, they suffer from imaging limitations arising from the associated X-ray microtomography (X-ray \(\mu \)CT) process, which induces discrepancies in the properties estimates. Assessment of the kinetic parameters also raises challenges, as reactive coefficients are critical parameters that can cover a wide range of values. We account for these two issues and ensure reliable calibration of pore-scale modeling, based on dynamical \(\mu \)CT images, by integrating uncertainty quantification in the workflow. The present method is based on a multitasking formulation of reactive inverse problems combining data-driven and physics-informed techniques in calcite dissolution. This allows quantifying morphological uncertainties on the porosity field and estimating reactive parameter ranges through prescribed PDE models, with a latent concentration field, and dynamical \(\mu \)CT observations. The data assimilation strategy relies on sequential reinforcement incorporating successively additional PDE constraints and suitable formulation of the heterogeneous diffusion differential operator leading to enhanced computational efficiency. We provide a robust and unbiased uncertainty quantification by straightforward adaptive weighting of Bayesian Physics-Informed Neural Networks (BPINNs), ensuring reliable micro-porosity changes during geochemical transformations. We demonstrate successful Bayesian Inference in 1D+Time calcite dissolution based on synthetic \(\mu \)CT images with meaningful posterior distribution on the reactive parameters and dimensionless numbers. We eventually apply this framework to a more realistic 2D+Time data assimilation problem involving heterogeneous porosity levels and synthetic \(\mu \)CT dynamical observations.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.