基因组和外显子组混合测序方法以无偏见、高质量和高成本效益的方式捕捉基因变异

Toni A Boltz, Benjamin B Chu, Calwing Liao, Julia M Sealock, Robert Ye, Lerato Majara, Jack M Fu, Susan Service, Lingyu Zhan, Sarah E Medland, Sinead B Chapman, Simone Rubinacci, Matthew DeFelice, Jonna L Grimsby, Tamrat Abebe, Melkam Alemayehu, Fred K Ashaba, Elizabeth G Atkinson, Tim Bigdeli, Amanda B Bradway, Harrison Brand, Lori B Chibnik, Abebaw Fekadu, Michael Gatzen, Bizu Gelaye, Stella Gichuru, Marissa L Gildea, Toni C Hill, Hailiang Huang, Kalyn M Hubbard, Wilfred E. Injera, Roxanne James, Moses Joloba, Christopher Kachulis, Phillip R Kalmbach, Rogers Kamulegeya, Gabriel Kigen, Soyeon Kim, Nastassja Koen, Edith K. Kwobah, Joseph Kyebuzibwa, Seungmo Lee, Niall J Lennon, Penelope A Lind, Esteban A Lopera-Maya, Johnstone Makale, Serghei Mangul, Justin McMahon, Pierre Mowlem, Henry Musinguzi, Rehema M. Mwema, Noeline Nakasujja, Carter P Newman, Lethukuthula L Nkambule, Conor R O'Neil, Ana Maria Olivares, Catherine M. Olsen, Linnet Ongeri, Sophie J Parsa, Adele Pretorius, Raj Ramesar, Faye L Reagan, Chiara Sabatti, Jacquelyn A Schneider, Welelta Shiferaw, Anne Stevenson, Erik Stricker, Rocky E. Stroud, Jessie Tang, David Whiteman, Mary T Yohannes, Mingrui Yu, Kai Yuan, NeuroGAP Psychosis, Dickens Akena, Lukoye Atwoli, Symon M. Kariuki, Karestan C. Koenen, Charles R. J. C. Newton, Dan J. Stein, Solomon Teferra, Zukiswa Zingela, Carlos N Pato, Michele T Pato, Carlos Lopez-Jaramillo, Nelson Freimer, Roel A Ophoff, Loes M Olde Loohuis, Michael E Talkowski, Benjamin M Neale, Daniel P Howrigan, Alicia R Martin
{"title":"基因组和外显子组混合测序方法以无偏见、高质量和高成本效益的方式捕捉基因变异","authors":"Toni A Boltz, Benjamin B Chu, Calwing Liao, Julia M Sealock, Robert Ye, Lerato Majara, Jack M Fu, Susan Service, Lingyu Zhan, Sarah E Medland, Sinead B Chapman, Simone Rubinacci, Matthew DeFelice, Jonna L Grimsby, Tamrat Abebe, Melkam Alemayehu, Fred K Ashaba, Elizabeth G Atkinson, Tim Bigdeli, Amanda B Bradway, Harrison Brand, Lori B Chibnik, Abebaw Fekadu, Michael Gatzen, Bizu Gelaye, Stella Gichuru, Marissa L Gildea, Toni C Hill, Hailiang Huang, Kalyn M Hubbard, Wilfred E. Injera, Roxanne James, Moses Joloba, Christopher Kachulis, Phillip R Kalmbach, Rogers Kamulegeya, Gabriel Kigen, Soyeon Kim, Nastassja Koen, Edith K. Kwobah, Joseph Kyebuzibwa, Seungmo Lee, Niall J Lennon, Penelope A Lind, Esteban A Lopera-Maya, Johnstone Makale, Serghei Mangul, Justin McMahon, Pierre Mowlem, Henry Musinguzi, Rehema M. Mwema, Noeline Nakasujja, Carter P Newman, Lethukuthula L Nkambule, Conor R O'Neil, Ana Maria Olivares, Catherine M. Olsen, Linnet Ongeri, Sophie J Parsa, Adele Pretorius, Raj Ramesar, Faye L Reagan, Chiara Sabatti, Jacquelyn A Schneider, Welelta Shiferaw, Anne Stevenson, Erik Stricker, Rocky E. Stroud, Jessie Tang, David Whiteman, Mary T Yohannes, Mingrui Yu, Kai Yuan, NeuroGAP Psychosis, Dickens Akena, Lukoye Atwoli, Symon M. Kariuki, Karestan C. Koenen, Charles R. J. C. Newton, Dan J. Stein, Solomon Teferra, Zukiswa Zingela, Carlos N Pato, Michele T Pato, Carlos Lopez-Jaramillo, Nelson Freimer, Roel A Ophoff, Loes M Olde Loohuis, Michael E Talkowski, Benjamin M Neale, Daniel P Howrigan, Alicia R Martin","doi":"10.1101/2024.09.06.611689","DOIUrl":null,"url":null,"abstract":"We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4x mean depth) and deep whole exome (30-40x mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations. We evaluated the accuracy of BGE imputed genotypes against raw genotype calls from the Illumina Global Screening Array. All PUMAS cohorts had R2 concordance >=95% among SNPs with MAF>=1%, and never fell below >=90% R2 for SNPs with MAF<1%. Furthermore, concordance rates among local ancestries within two recently admixed cohorts were consistent among SNPs with MAF>=1%, with only minor deviations in SNPs with MAF<1%. We also benchmarked the discovery capacity of BGE to access protein-coding copy number variants (CNVs) against deep whole genome data, finding that deletions and duplications spanning at least 3 exons had a positive predicted value of ~90%. Our results demonstrate BGE scalability and efficacy in capturing SNPs, indels, and CNVs in the human genome at 28% of the cost of deep whole-genome sequencing. BGE is poised to enhance access to genomic testing and empower genomic discoveries, particularly in underrepresented populations.","PeriodicalId":501161,"journal":{"name":"bioRxiv - Genomics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A blended genome and exome sequencing method captures genetic variation in an unbiased, high-quality, and cost-effective manner\",\"authors\":\"Toni A Boltz, Benjamin B Chu, Calwing Liao, Julia M Sealock, Robert Ye, Lerato Majara, Jack M Fu, Susan Service, Lingyu Zhan, Sarah E Medland, Sinead B Chapman, Simone Rubinacci, Matthew DeFelice, Jonna L Grimsby, Tamrat Abebe, Melkam Alemayehu, Fred K Ashaba, Elizabeth G Atkinson, Tim Bigdeli, Amanda B Bradway, Harrison Brand, Lori B Chibnik, Abebaw Fekadu, Michael Gatzen, Bizu Gelaye, Stella Gichuru, Marissa L Gildea, Toni C Hill, Hailiang Huang, Kalyn M Hubbard, Wilfred E. Injera, Roxanne James, Moses Joloba, Christopher Kachulis, Phillip R Kalmbach, Rogers Kamulegeya, Gabriel Kigen, Soyeon Kim, Nastassja Koen, Edith K. Kwobah, Joseph Kyebuzibwa, Seungmo Lee, Niall J Lennon, Penelope A Lind, Esteban A Lopera-Maya, Johnstone Makale, Serghei Mangul, Justin McMahon, Pierre Mowlem, Henry Musinguzi, Rehema M. Mwema, Noeline Nakasujja, Carter P Newman, Lethukuthula L Nkambule, Conor R O'Neil, Ana Maria Olivares, Catherine M. Olsen, Linnet Ongeri, Sophie J Parsa, Adele Pretorius, Raj Ramesar, Faye L Reagan, Chiara Sabatti, Jacquelyn A Schneider, Welelta Shiferaw, Anne Stevenson, Erik Stricker, Rocky E. Stroud, Jessie Tang, David Whiteman, Mary T Yohannes, Mingrui Yu, Kai Yuan, NeuroGAP Psychosis, Dickens Akena, Lukoye Atwoli, Symon M. Kariuki, Karestan C. Koenen, Charles R. J. C. Newton, Dan J. Stein, Solomon Teferra, Zukiswa Zingela, Carlos N Pato, Michele T Pato, Carlos Lopez-Jaramillo, Nelson Freimer, Roel A Ophoff, Loes M Olde Loohuis, Michael E Talkowski, Benjamin M Neale, Daniel P Howrigan, Alicia R Martin\",\"doi\":\"10.1101/2024.09.06.611689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4x mean depth) and deep whole exome (30-40x mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations. We evaluated the accuracy of BGE imputed genotypes against raw genotype calls from the Illumina Global Screening Array. All PUMAS cohorts had R2 concordance >=95% among SNPs with MAF>=1%, and never fell below >=90% R2 for SNPs with MAF<1%. Furthermore, concordance rates among local ancestries within two recently admixed cohorts were consistent among SNPs with MAF>=1%, with only minor deviations in SNPs with MAF<1%. We also benchmarked the discovery capacity of BGE to access protein-coding copy number variants (CNVs) against deep whole genome data, finding that deletions and duplications spanning at least 3 exons had a positive predicted value of ~90%. Our results demonstrate BGE scalability and efficacy in capturing SNPs, indels, and CNVs in the human genome at 28% of the cost of deep whole-genome sequencing. BGE is poised to enhance access to genomic testing and empower genomic discoveries, particularly in underrepresented populations.\",\"PeriodicalId\":501161,\"journal\":{\"name\":\"bioRxiv - Genomics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们部署了混合基因组外显子组(BGE),这是一种 DNA 文库混合方法,可在一次测序运行中生成低通全基因组(1-4 倍平均深度)和深度全外显子组(30-40 倍平均深度)数据。这项技术具有成本效益,能通过深度全基因组测序发现大多数基因组,并提供一种无偏见的方法来捕捉全球常见 SNP 变异的多样性。为了大规模评估这项新技术,我们应用 BGE 对来自精神疾病关联研究(PUMAS)项目(Populations Underrepresented in Mental Illness Associations Studies)的 53,000 个样本进行了测序。我们对照来自 Illumina 全球筛查阵列的原始基因型调用,评估了 BGE 推算基因型的准确性。在 MAF>=1% 的 SNPs 中,所有 PUMAS 队列的 R2 一致性均达到 >=95%,在 MAF<1% 的 SNPs 中,R2 一致性从未低于 >=90%。此外,在 MAF>=1% 的 SNPs 中,两个新近混血队列中当地祖先的一致性率是一致的,MAF<1% 的 SNPs 的一致性率仅有轻微偏差。我们还根据深度全基因组数据对 BGE 获取蛋白质编码拷贝数变异 (CNV) 的发现能力进行了基准测试,发现至少跨越 3 个外显子的缺失和重复具有约 90% 的正预测值。我们的研究结果证明了 BGE 在捕获人类基因组中的 SNPs、indels 和 CNVs 方面的可扩展性和有效性,其成本仅为深度全基因组测序的 28%。BGE 将提高基因组测试的可及性,促进基因组发现,尤其是在代表性不足的人群中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A blended genome and exome sequencing method captures genetic variation in an unbiased, high-quality, and cost-effective manner
We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4x mean depth) and deep whole exome (30-40x mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations. We evaluated the accuracy of BGE imputed genotypes against raw genotype calls from the Illumina Global Screening Array. All PUMAS cohorts had R2 concordance >=95% among SNPs with MAF>=1%, and never fell below >=90% R2 for SNPs with MAF<1%. Furthermore, concordance rates among local ancestries within two recently admixed cohorts were consistent among SNPs with MAF>=1%, with only minor deviations in SNPs with MAF<1%. We also benchmarked the discovery capacity of BGE to access protein-coding copy number variants (CNVs) against deep whole genome data, finding that deletions and duplications spanning at least 3 exons had a positive predicted value of ~90%. Our results demonstrate BGE scalability and efficacy in capturing SNPs, indels, and CNVs in the human genome at 28% of the cost of deep whole-genome sequencing. BGE is poised to enhance access to genomic testing and empower genomic discoveries, particularly in underrepresented populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信