Mengzhen Li, Xuanpei Zhai, Jie Li, Shiyan Li, Yanan Du, Jian Zhang, Rong Zhang, Yuan Luo, Wu Wei, Yifan Liu
{"title":"利用 CAP-seq 对单细胞基因组进行高覆盖率、大规模并行测序","authors":"Mengzhen Li, Xuanpei Zhai, Jie Li, Shiyan Li, Yanan Du, Jian Zhang, Rong Zhang, Yuan Luo, Wu Wei, Yifan Liu","doi":"10.1101/2024.09.10.612220","DOIUrl":null,"url":null,"abstract":"Microorganisms dominate Earth's ecosystems in both abundance and diversity. Studying these organisms relies on their genome information, but obtaining high-quality genomes has long been challenging due to technical limitations in genomic sequencing. Traditional genome sequencing methods are limited by the need to culture isolated strains, excluding unculturable taxa and restricting the study of complex communities. Metagenomics bypasses this but lacks single-cell resolution and often misses rare, critical species. Droplet-based single-cell genomics offers high-throughput genome library preparation but faces challenges like requiring complex microfluidic setups and low genome coverage. To address these challenges, we introduce CAP-seq, a high-throughput single-cell genomic sequencing method with markedly improved genome coverage and ease of use. CAP-seq employs semi-permeable compartments that allow reagent exchange while retaining large DNA fragments, enabling efficient genome processing. This innovation results in higher-quality single amplified genomes (SAGs) and significantly improves resolution. In validation tests with simple and complex microbial communities, CAP-seq yielded high-quality SAGs with over 50% genome coverage, capturing rare taxa more accurately and providing detailed insights into strain-level variation. CAP-seq thus offers a scalable, high-resolution solution for microbial genomic analysis, overcoming the limitations of droplet-based single-cell genomics and enhancing the study of complex microbial ecosystems.","PeriodicalId":501161,"journal":{"name":"bioRxiv - Genomics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-coverage, massively parallel sequencing of single-cell genomes with CAP-seq\",\"authors\":\"Mengzhen Li, Xuanpei Zhai, Jie Li, Shiyan Li, Yanan Du, Jian Zhang, Rong Zhang, Yuan Luo, Wu Wei, Yifan Liu\",\"doi\":\"10.1101/2024.09.10.612220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microorganisms dominate Earth's ecosystems in both abundance and diversity. Studying these organisms relies on their genome information, but obtaining high-quality genomes has long been challenging due to technical limitations in genomic sequencing. Traditional genome sequencing methods are limited by the need to culture isolated strains, excluding unculturable taxa and restricting the study of complex communities. Metagenomics bypasses this but lacks single-cell resolution and often misses rare, critical species. Droplet-based single-cell genomics offers high-throughput genome library preparation but faces challenges like requiring complex microfluidic setups and low genome coverage. To address these challenges, we introduce CAP-seq, a high-throughput single-cell genomic sequencing method with markedly improved genome coverage and ease of use. CAP-seq employs semi-permeable compartments that allow reagent exchange while retaining large DNA fragments, enabling efficient genome processing. This innovation results in higher-quality single amplified genomes (SAGs) and significantly improves resolution. In validation tests with simple and complex microbial communities, CAP-seq yielded high-quality SAGs with over 50% genome coverage, capturing rare taxa more accurately and providing detailed insights into strain-level variation. CAP-seq thus offers a scalable, high-resolution solution for microbial genomic analysis, overcoming the limitations of droplet-based single-cell genomics and enhancing the study of complex microbial ecosystems.\",\"PeriodicalId\":501161,\"journal\":{\"name\":\"bioRxiv - Genomics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.10.612220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
微生物在地球生态系统的数量和多样性方面都占据着主导地位。研究这些生物依赖于它们的基因组信息,但由于基因组测序的技术限制,获得高质量的基因组一直是个挑战。传统的基因组测序方法受限于培养分离菌株的需要,排除了不可培养的类群,限制了对复杂群落的研究。元基因组学绕过了这一问题,但缺乏单细胞分辨率,往往会遗漏稀有的关键物种。基于液滴的单细胞基因组学可提供高通量基因组文库制备,但面临着需要复杂微流控装置和基因组覆盖率低等挑战。为了应对这些挑战,我们引入了 CAP-seq,这是一种高通量单细胞基因组测序方法,其基因组覆盖率和易用性都有显著提高。CAP-seq 采用半渗透隔室,允许试剂交换,同时保留大的 DNA 片段,从而实现高效的基因组处理。这一创新可获得更高质量的单扩增基因组(SAG),并显著提高分辨率。在简单和复杂微生物群落的验证测试中,CAP-seq 得到了基因组覆盖率超过 50% 的高质量 SAG,更准确地捕捉到了稀有类群,并提供了对菌株级变异的详细了解。因此,CAP-seq 为微生物基因组分析提供了一种可扩展的高分辨率解决方案,克服了基于液滴的单细胞基因组学的局限性,加强了对复杂微生物生态系统的研究。
High-coverage, massively parallel sequencing of single-cell genomes with CAP-seq
Microorganisms dominate Earth's ecosystems in both abundance and diversity. Studying these organisms relies on their genome information, but obtaining high-quality genomes has long been challenging due to technical limitations in genomic sequencing. Traditional genome sequencing methods are limited by the need to culture isolated strains, excluding unculturable taxa and restricting the study of complex communities. Metagenomics bypasses this but lacks single-cell resolution and often misses rare, critical species. Droplet-based single-cell genomics offers high-throughput genome library preparation but faces challenges like requiring complex microfluidic setups and low genome coverage. To address these challenges, we introduce CAP-seq, a high-throughput single-cell genomic sequencing method with markedly improved genome coverage and ease of use. CAP-seq employs semi-permeable compartments that allow reagent exchange while retaining large DNA fragments, enabling efficient genome processing. This innovation results in higher-quality single amplified genomes (SAGs) and significantly improves resolution. In validation tests with simple and complex microbial communities, CAP-seq yielded high-quality SAGs with over 50% genome coverage, capturing rare taxa more accurately and providing detailed insights into strain-level variation. CAP-seq thus offers a scalable, high-resolution solution for microbial genomic analysis, overcoming the limitations of droplet-based single-cell genomics and enhancing the study of complex microbial ecosystems.