基于 LLM 的事件抽象和整合物联网日志

Mohsen Shirali, Mohammadreza Fani Sani, Zahra Ahmadi, Estefania Serral
{"title":"基于 LLM 的事件抽象和整合物联网日志","authors":"Mohsen Shirali, Mohammadreza Fani Sani, Zahra Ahmadi, Estefania Serral","doi":"arxiv-2409.03478","DOIUrl":null,"url":null,"abstract":"The continuous flow of data collected by Internet of Things (IoT) devices,\nhas revolutionised our ability to understand and interact with the world across\nvarious applications. However, this data must be prepared and transformed into\nevent data before analysis can begin. In this paper, we shed light on the\npotential of leveraging Large Language Models (LLMs) in event abstraction and\nintegration. Our approach aims to create event records from raw sensor readings\nand merge the logs from multiple IoT sources into a single event log suitable\nfor further Process Mining applications. We demonstrate the capabilities of\nLLMs in event abstraction considering a case study for IoT application in\nelderly care and longitudinal health monitoring. The results, showing on\naverage an accuracy of 90% in detecting high-level activities. These results\nhighlight LLMs' promising potential in addressing event abstraction and\nintegration challenges, effectively bridging the existing gap.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LLM-based event abstraction and integration for IoT-sourced logs\",\"authors\":\"Mohsen Shirali, Mohammadreza Fani Sani, Zahra Ahmadi, Estefania Serral\",\"doi\":\"arxiv-2409.03478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuous flow of data collected by Internet of Things (IoT) devices,\\nhas revolutionised our ability to understand and interact with the world across\\nvarious applications. However, this data must be prepared and transformed into\\nevent data before analysis can begin. In this paper, we shed light on the\\npotential of leveraging Large Language Models (LLMs) in event abstraction and\\nintegration. Our approach aims to create event records from raw sensor readings\\nand merge the logs from multiple IoT sources into a single event log suitable\\nfor further Process Mining applications. We demonstrate the capabilities of\\nLLMs in event abstraction considering a case study for IoT application in\\nelderly care and longitudinal health monitoring. The results, showing on\\naverage an accuracy of 90% in detecting high-level activities. These results\\nhighlight LLMs' promising potential in addressing event abstraction and\\nintegration challenges, effectively bridging the existing gap.\",\"PeriodicalId\":501168,\"journal\":{\"name\":\"arXiv - CS - Emerging Technologies\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)设备收集的数据流源源不断,彻底改变了我们在各种应用中了解世界并与之互动的能力。然而,在开始分析之前,必须将这些数据准备好并转换成事件数据。在本文中,我们将阐明利用大型语言模型(LLM)进行事件抽象和整合的潜力。我们的方法旨在从原始传感器读数中创建事件记录,并将来自多个物联网源的日志合并为适合进一步流程挖掘应用的单一事件日志。我们通过一个物联网应用于老年人护理和纵向健康监测的案例研究,展示了LLMs 在事件抽象方面的能力。结果表明,检测高级活动的平均准确率为 90%。这些结果凸显了 LLMs 在解决事件抽象和集成挑战方面的巨大潜力,有效弥补了现有差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LLM-based event abstraction and integration for IoT-sourced logs
The continuous flow of data collected by Internet of Things (IoT) devices, has revolutionised our ability to understand and interact with the world across various applications. However, this data must be prepared and transformed into event data before analysis can begin. In this paper, we shed light on the potential of leveraging Large Language Models (LLMs) in event abstraction and integration. Our approach aims to create event records from raw sensor readings and merge the logs from multiple IoT sources into a single event log suitable for further Process Mining applications. We demonstrate the capabilities of LLMs in event abstraction considering a case study for IoT application in elderly care and longitudinal health monitoring. The results, showing on average an accuracy of 90% in detecting high-level activities. These results highlight LLMs' promising potential in addressing event abstraction and integration challenges, effectively bridging the existing gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信