营养饥饿激活成纤维细胞中与炎症性肠病风险相关的 ECM 重塑基因增强子

Stefano Secchia, Vera Beilinson, Xiaoting Chen, Zi F. Yang, Joseph A. Wayman, Jasbir Dhaliwal, Ingrid Jurickova, Elizabeth Angerman, Lee A. Denson, Emily R. Miraldi, Matthew T. Weirauch, Kohta Ikegami
{"title":"营养饥饿激活成纤维细胞中与炎症性肠病风险相关的 ECM 重塑基因增强子","authors":"Stefano Secchia, Vera Beilinson, Xiaoting Chen, Zi F. Yang, Joseph A. Wayman, Jasbir Dhaliwal, Ingrid Jurickova, Elizabeth Angerman, Lee A. Denson, Emily R. Miraldi, Matthew T. Weirauch, Kohta Ikegami","doi":"10.1101/2024.09.06.611754","DOIUrl":null,"url":null,"abstract":"Nutrient deprivation induces a reversible cell cycle arrest state termed quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, nutrient deprivation is associated with activated fibroblast states in pathological microenvironments in which fibroblasts drive extracellular matrix (ECM) remodeling to alter tissue environments. The relationship between nutrient deprivation and fibroblast activation remains unclear. Here, we report that serum deprivation extensively activates transcription of ECM remodeling genes in cultured fibroblasts, despite the induction of quiescence. Starvation-induced transcriptional activation accompanied large-scale histone acetylation of putative distal enhancers, but not promoters. The starvation-activated putative enhancers were enriched for non-coding genetic risk variants associated with inflammatory bowel disease (IBD), suggesting that the starvation-activated gene regulatory network may contribute to fibroblast activation in IBD. Indeed, the starvation-activated gene <em>PLAU</em>, encoding uPA serine protease for plasminogen and ECM, was upregulated in inflammatory fibroblasts in the intestines of IBD patients. Furthermore, the starvation-activated putative enhancer at <em>PLAU</em>, which harbors an IBD risk variant, gained chromatin accessibility in IBD patient fibroblasts. This study implicates nutrient deprivation in transcriptional activation of ECM remodeling genes in fibroblasts and suggests nutrient deprivation as a potential mechanism for pathological fibroblast activation in IBD.","PeriodicalId":501161,"journal":{"name":"bioRxiv - Genomics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nutrient starvation activates ECM remodeling gene enhancers associated with inflammatory bowel disease risk in fibroblasts\",\"authors\":\"Stefano Secchia, Vera Beilinson, Xiaoting Chen, Zi F. Yang, Joseph A. Wayman, Jasbir Dhaliwal, Ingrid Jurickova, Elizabeth Angerman, Lee A. Denson, Emily R. Miraldi, Matthew T. Weirauch, Kohta Ikegami\",\"doi\":\"10.1101/2024.09.06.611754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nutrient deprivation induces a reversible cell cycle arrest state termed quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, nutrient deprivation is associated with activated fibroblast states in pathological microenvironments in which fibroblasts drive extracellular matrix (ECM) remodeling to alter tissue environments. The relationship between nutrient deprivation and fibroblast activation remains unclear. Here, we report that serum deprivation extensively activates transcription of ECM remodeling genes in cultured fibroblasts, despite the induction of quiescence. Starvation-induced transcriptional activation accompanied large-scale histone acetylation of putative distal enhancers, but not promoters. The starvation-activated putative enhancers were enriched for non-coding genetic risk variants associated with inflammatory bowel disease (IBD), suggesting that the starvation-activated gene regulatory network may contribute to fibroblast activation in IBD. Indeed, the starvation-activated gene <em>PLAU</em>, encoding uPA serine protease for plasminogen and ECM, was upregulated in inflammatory fibroblasts in the intestines of IBD patients. Furthermore, the starvation-activated putative enhancer at <em>PLAU</em>, which harbors an IBD risk variant, gained chromatin accessibility in IBD patient fibroblasts. This study implicates nutrient deprivation in transcriptional activation of ECM remodeling genes in fibroblasts and suggests nutrient deprivation as a potential mechanism for pathological fibroblast activation in IBD.\",\"PeriodicalId\":501161,\"journal\":{\"name\":\"bioRxiv - Genomics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

营养匮乏会诱导一种称为静止的可逆细胞周期停滞状态,这种状态往往伴随着转录沉默和染色质压实。矛盾的是,在病理微环境中,成纤维细胞驱动细胞外基质(ECM)重塑以改变组织环境,营养缺乏与成纤维细胞活化状态有关。营养匮乏与成纤维细胞活化之间的关系仍不清楚。在这里,我们报告说,尽管诱导了静止,但血清剥夺广泛激活了培养成纤维细胞中 ECM 重塑基因的转录。饥饿诱导的转录激活伴随着推定远端增强子(而非启动子)的大规模组蛋白乙酰化。饥饿激活的假定增强子富含与炎症性肠病(IBD)相关的非编码基因风险变异,这表明饥饿激活的基因调控网络可能有助于IBD中成纤维细胞的激活。事实上,在 IBD 患者肠道中的炎症成纤维细胞中,上调了饥饿激活基因 PLAU,该基因编码用于纤溶酶原和 ECM 的 uPA 丝氨酸蛋白酶。此外,在 IBD 患者的成纤维细胞中,饥饿激活的 PLAU 假定增强子(携带 IBD 风险变体)获得了染色质可及性。这项研究表明,营养剥夺与成纤维细胞中 ECM 重塑基因的转录激活有关,并提示营养剥夺是 IBD 病理成纤维细胞激活的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nutrient starvation activates ECM remodeling gene enhancers associated with inflammatory bowel disease risk in fibroblasts
Nutrient deprivation induces a reversible cell cycle arrest state termed quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, nutrient deprivation is associated with activated fibroblast states in pathological microenvironments in which fibroblasts drive extracellular matrix (ECM) remodeling to alter tissue environments. The relationship between nutrient deprivation and fibroblast activation remains unclear. Here, we report that serum deprivation extensively activates transcription of ECM remodeling genes in cultured fibroblasts, despite the induction of quiescence. Starvation-induced transcriptional activation accompanied large-scale histone acetylation of putative distal enhancers, but not promoters. The starvation-activated putative enhancers were enriched for non-coding genetic risk variants associated with inflammatory bowel disease (IBD), suggesting that the starvation-activated gene regulatory network may contribute to fibroblast activation in IBD. Indeed, the starvation-activated gene PLAU, encoding uPA serine protease for plasminogen and ECM, was upregulated in inflammatory fibroblasts in the intestines of IBD patients. Furthermore, the starvation-activated putative enhancer at PLAU, which harbors an IBD risk variant, gained chromatin accessibility in IBD patient fibroblasts. This study implicates nutrient deprivation in transcriptional activation of ECM remodeling genes in fibroblasts and suggests nutrient deprivation as a potential mechanism for pathological fibroblast activation in IBD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信