基于钻孔微静态锥入系统的黄土界面剪切强度参数识别

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Hengxing Lan, Zhanting Song, Han Bao, Yangfan Ma, Changgen Yan, Shijie Liu, Juntian Wang
{"title":"基于钻孔微静态锥入系统的黄土界面剪切强度参数识别","authors":"Hengxing Lan, Zhanting Song, Han Bao, Yangfan Ma, Changgen Yan, Shijie Liu, Juntian Wang","doi":"10.1186/s40677-024-00286-5","DOIUrl":null,"url":null,"abstract":"Loess is prone to large deformation and flow slide due to natural and artificial interfaces inside. The strength of these interfaces controls the mechanical properties of loess. Obtaining their mechanical parameters through in-situ testing is essential for evaluating the mechanical stability in loess engineering with interfaces. By developing a borehole micro static cone penetration system and creating various types of loess with interfaces, extensive borehole penetration model tests were conducted to observe changes in cone tip resistance during penetration. The response surface method was used to analyze the impact of various test conditions on the calculated resistance. A three-dimensional surface fitting method was employed to establish the relationship between penetration parameters and shear strength parameters, which was validated through in-situ testing. The developed borehole micro static cone penetration system achieves overall miniaturization while providing significant penetration power and ensuring an effective penetration distance. Cone tip resistance development during penetration can be divided into three stages: initial, rapid increase, and slow increase. The transition times between these stages vary for different soils. Calculated resistance is positively correlated with dry density and normal stress and negatively correlated with water content. A quadratic positive correlation was established between calculated resistance and shear strength parameters during penetration. In composite soils, the interaction between water content and normal stress is strong. Compared to intact soil samples, the shear strength parameters of composite soils are more prominently influenced by water content. A system for testing interface mechanical parameters was innovatively developed, fulfilling the need to obtain interface shear strength parameters for deep soil. This study can provide support for ensuring the long-term stability of the loess slope or subgrade with interfaces.","PeriodicalId":37025,"journal":{"name":"Geoenvironmental Disasters","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear strength parameters identification of loess interface based on borehole micro static cone penetration system\",\"authors\":\"Hengxing Lan, Zhanting Song, Han Bao, Yangfan Ma, Changgen Yan, Shijie Liu, Juntian Wang\",\"doi\":\"10.1186/s40677-024-00286-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Loess is prone to large deformation and flow slide due to natural and artificial interfaces inside. The strength of these interfaces controls the mechanical properties of loess. Obtaining their mechanical parameters through in-situ testing is essential for evaluating the mechanical stability in loess engineering with interfaces. By developing a borehole micro static cone penetration system and creating various types of loess with interfaces, extensive borehole penetration model tests were conducted to observe changes in cone tip resistance during penetration. The response surface method was used to analyze the impact of various test conditions on the calculated resistance. A three-dimensional surface fitting method was employed to establish the relationship between penetration parameters and shear strength parameters, which was validated through in-situ testing. The developed borehole micro static cone penetration system achieves overall miniaturization while providing significant penetration power and ensuring an effective penetration distance. Cone tip resistance development during penetration can be divided into three stages: initial, rapid increase, and slow increase. The transition times between these stages vary for different soils. Calculated resistance is positively correlated with dry density and normal stress and negatively correlated with water content. A quadratic positive correlation was established between calculated resistance and shear strength parameters during penetration. In composite soils, the interaction between water content and normal stress is strong. Compared to intact soil samples, the shear strength parameters of composite soils are more prominently influenced by water content. A system for testing interface mechanical parameters was innovatively developed, fulfilling the need to obtain interface shear strength parameters for deep soil. This study can provide support for ensuring the long-term stability of the loess slope or subgrade with interfaces.\",\"PeriodicalId\":37025,\"journal\":{\"name\":\"Geoenvironmental Disasters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenvironmental Disasters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40677-024-00286-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenvironmental Disasters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40677-024-00286-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于黄土内部存在天然和人工界面,黄土容易发生大变形和流动滑动。这些界面的强度控制着黄土的机械性能。通过原位测试获得其力学参数对于评估有界面黄土工程的力学稳定性至关重要。通过开发钻孔微型静态锥体贯入系统和创建各种类型的带界面黄土,进行了大量的钻孔贯入模型试验,以观察贯入过程中锥体顶端阻力的变化。采用响应面法分析了各种试验条件对计算阻力的影响。采用三维曲面拟合方法建立了贯入参数与剪切强度参数之间的关系,并通过原位测试进行了验证。所开发的钻孔微型静态锥入系统实现了整体微型化,同时提供了巨大的穿透力,并确保了有效的穿透距离。贯入过程中锥尖阻力的发展可分为三个阶段:初始阶段、快速增加阶段和缓慢增加阶段。不同土壤在这三个阶段之间的过渡时间各不相同。计算阻力与干密度和法向应力呈正相关,与含水量呈负相关。在渗透过程中,计算阻力与剪切强度参数之间呈二次正相关。在复合土中,含水量和法向应力之间的相互作用很强。与完整土样相比,复合土的剪切强度参数受含水量的影响更为显著。该研究创新性地开发了界面力学参数测试系统,满足了获取深层土界面剪切强度参数的需求。该研究可为确保有界面的黄土边坡或路基的长期稳定性提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shear strength parameters identification of loess interface based on borehole micro static cone penetration system
Loess is prone to large deformation and flow slide due to natural and artificial interfaces inside. The strength of these interfaces controls the mechanical properties of loess. Obtaining their mechanical parameters through in-situ testing is essential for evaluating the mechanical stability in loess engineering with interfaces. By developing a borehole micro static cone penetration system and creating various types of loess with interfaces, extensive borehole penetration model tests were conducted to observe changes in cone tip resistance during penetration. The response surface method was used to analyze the impact of various test conditions on the calculated resistance. A three-dimensional surface fitting method was employed to establish the relationship between penetration parameters and shear strength parameters, which was validated through in-situ testing. The developed borehole micro static cone penetration system achieves overall miniaturization while providing significant penetration power and ensuring an effective penetration distance. Cone tip resistance development during penetration can be divided into three stages: initial, rapid increase, and slow increase. The transition times between these stages vary for different soils. Calculated resistance is positively correlated with dry density and normal stress and negatively correlated with water content. A quadratic positive correlation was established between calculated resistance and shear strength parameters during penetration. In composite soils, the interaction between water content and normal stress is strong. Compared to intact soil samples, the shear strength parameters of composite soils are more prominently influenced by water content. A system for testing interface mechanical parameters was innovatively developed, fulfilling the need to obtain interface shear strength parameters for deep soil. This study can provide support for ensuring the long-term stability of the loess slope or subgrade with interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoenvironmental Disasters
Geoenvironmental Disasters Social Sciences-Geography, Planning and Development
CiteScore
8.90
自引率
6.20%
发文量
22
期刊介绍: Geoenvironmental Disasters is an international journal with a focus on multi-disciplinary applied and fundamental research and the effects and impacts on infrastructure, society and the environment of geoenvironmental disasters triggered by various types of geo-hazards (e.g. earthquakes, volcanic activity, landslides, tsunamis, intensive erosion and hydro-meteorological events). The integrated study of Geoenvironmental Disasters is an emerging and composite field of research interfacing with areas traditionally within civil engineering, earth sciences, atmospheric sciences and the life sciences. It centers on the interactions within and between the Earth''s ground, air and water environments, all of which are affected by climate, geological, morphological and anthropological processes; and biological and ecological cycles. Disasters are dynamic forces which can change the Earth pervasively, rapidly, or abruptly, and which can generate lasting effects on the natural and built environments. The journal publishes research papers, case studies and quick reports of recent geoenvironmental disasters, review papers and technical reports of various geoenvironmental disaster-related case studies. The focus on case studies and quick reports of recent geoenvironmental disasters helps to advance the practical understanding of geoenvironmental disasters and to inform future research priorities; they are a major component of the journal. The journal aims for the rapid publication of research papers at a high scientific level. The journal welcomes proposals for special issues reflecting the trends in geoenvironmental disaster reduction and monothematic issues. Researchers and practitioners are encouraged to submit original, unpublished contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信