体内人类增强子的突变敏感性图谱

Michael Kosicki, Boyang Zhang, Anusri Pampari, Jennifer A Akiyama, Ingrid Playzer-Frick, Catherine S Novak, Stella Tran, Yiwen Zhu, Momoe Kato, Riana D Hunter, Kianna von Maydell, Sarah Barton, Erik Beckman, Anshul Kundaje, Diane E Dickel, Axel Visel, Len A Pennacchio
{"title":"体内人类增强子的突变敏感性图谱","authors":"Michael Kosicki, Boyang Zhang, Anusri Pampari, Jennifer A Akiyama, Ingrid Playzer-Frick, Catherine S Novak, Stella Tran, Yiwen Zhu, Momoe Kato, Riana D Hunter, Kianna von Maydell, Sarah Barton, Erik Beckman, Anshul Kundaje, Diane E Dickel, Axel Visel, Len A Pennacchio","doi":"10.1101/2024.09.06.611737","DOIUrl":null,"url":null,"abstract":"Distant-acting enhancers are central to human development. However, our limited understanding of their functional sequence features prevents the interpretation of enhancer mutations in disease. Here, we determined the functional sensitivity to mutagenesis of human developmental enhancers in vivo. Focusing on seven enhancers active in the developing brain, heart, limb and face, we created over 1700 transgenic mice for over 260 mutagenized enhancer alleles. Systematic mutation of 12-basepair blocks collectively altered each sequence feature in each enhancer at least once. We show that 69% of all blocks are required for normal in vivo activity, with mutations more commonly resulting in loss (60%) than in gain (9%) of function. Using predictive modeling, we annotated critical nucleotides at base-pair resolution. The vast majority of motifs predicted by these machine learning models (88%) coincided with changes to in vivo function, and the models showed considerable sensitivity, identifying 59% of all functional blocks. Taken together, our results reveal that human enhancers contain a high density of sequence features required for their normal in vivo function and provide a rich resource for further exploration of human enhancer logic.","PeriodicalId":501161,"journal":{"name":"bioRxiv - Genomics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutagenesis Sensitivity Mapping of Human Enhancers In Vivo\",\"authors\":\"Michael Kosicki, Boyang Zhang, Anusri Pampari, Jennifer A Akiyama, Ingrid Playzer-Frick, Catherine S Novak, Stella Tran, Yiwen Zhu, Momoe Kato, Riana D Hunter, Kianna von Maydell, Sarah Barton, Erik Beckman, Anshul Kundaje, Diane E Dickel, Axel Visel, Len A Pennacchio\",\"doi\":\"10.1101/2024.09.06.611737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distant-acting enhancers are central to human development. However, our limited understanding of their functional sequence features prevents the interpretation of enhancer mutations in disease. Here, we determined the functional sensitivity to mutagenesis of human developmental enhancers in vivo. Focusing on seven enhancers active in the developing brain, heart, limb and face, we created over 1700 transgenic mice for over 260 mutagenized enhancer alleles. Systematic mutation of 12-basepair blocks collectively altered each sequence feature in each enhancer at least once. We show that 69% of all blocks are required for normal in vivo activity, with mutations more commonly resulting in loss (60%) than in gain (9%) of function. Using predictive modeling, we annotated critical nucleotides at base-pair resolution. The vast majority of motifs predicted by these machine learning models (88%) coincided with changes to in vivo function, and the models showed considerable sensitivity, identifying 59% of all functional blocks. Taken together, our results reveal that human enhancers contain a high density of sequence features required for their normal in vivo function and provide a rich resource for further exploration of human enhancer logic.\",\"PeriodicalId\":501161,\"journal\":{\"name\":\"bioRxiv - Genomics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.06.611737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

远距作用增强子是人类发育的核心。然而,由于我们对增强子功能序列特征的了解有限,因此无法解释疾病中的增强子突变。在这里,我们确定了体内人类发育增强子对突变的功能敏感性。我们重点研究了活跃于大脑、心脏、四肢和面部发育过程中的七个增强子,用 260 多个诱变增强子等位基因创建了 1700 多只转基因小鼠。对 12 个碱基对区块进行系统突变后,每个增强子的每个序列特征都发生了至少一次改变。我们发现,所有区块中有 69% 是正常体内活动所必需的,突变导致的功能丧失(60%)多于功能获得(9%)。通过预测建模,我们注释了碱基对分辨率的关键核苷酸。这些机器学习模型预测出的绝大多数主题(88%)与体内功能的变化相吻合,而且这些模型显示出相当高的灵敏度,识别出了 59% 的所有功能块。总之,我们的研究结果揭示了人类增强子含有正常体内功能所需的高密度序列特征,为进一步探索人类增强子逻辑提供了丰富的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutagenesis Sensitivity Mapping of Human Enhancers In Vivo
Distant-acting enhancers are central to human development. However, our limited understanding of their functional sequence features prevents the interpretation of enhancer mutations in disease. Here, we determined the functional sensitivity to mutagenesis of human developmental enhancers in vivo. Focusing on seven enhancers active in the developing brain, heart, limb and face, we created over 1700 transgenic mice for over 260 mutagenized enhancer alleles. Systematic mutation of 12-basepair blocks collectively altered each sequence feature in each enhancer at least once. We show that 69% of all blocks are required for normal in vivo activity, with mutations more commonly resulting in loss (60%) than in gain (9%) of function. Using predictive modeling, we annotated critical nucleotides at base-pair resolution. The vast majority of motifs predicted by these machine learning models (88%) coincided with changes to in vivo function, and the models showed considerable sensitivity, identifying 59% of all functional blocks. Taken together, our results reveal that human enhancers contain a high density of sequence features required for their normal in vivo function and provide a rich resource for further exploration of human enhancer logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信