利用 CLEANSER 对单细胞 CRISPR 筛选中的环境 gRNA 进行表征和生物信息学筛选

Siyan Liu, Marisa C Hamilton, Thomas N Cowart, Alejandro Barrera, Lexi R Bounds, Alexander C Nelson, Richard W Doty, Andrew S Allen, Gregory E Crawford, William H Majoros, Charles A. Gersbach
{"title":"利用 CLEANSER 对单细胞 CRISPR 筛选中的环境 gRNA 进行表征和生物信息学筛选","authors":"Siyan Liu, Marisa C Hamilton, Thomas N Cowart, Alejandro Barrera, Lexi R Bounds, Alexander C Nelson, Richard W Doty, Andrew S Allen, Gregory E Crawford, William H Majoros, Charles A. Gersbach","doi":"10.1101/2024.09.04.611293","DOIUrl":null,"url":null,"abstract":"Recent technological developments in single-cell RNA-seq CRISPR screens enable high-throughput investigation of the genome. Through transduction of a gRNA library to a cell population followed by transcriptomic profiling by scRNA-seq, it is possible to characterize the effects of thousands of genomic perturbations on global gene expression. A major source of noise in scRNA-seq CRISPR screens are ambient gRNAs, which are contaminating gRNAs that likely originate from other cells. If not properly filtered, ambient gRNAs can result in an excess of false positive gRNA assignments. Here, we utilize CRISPR barnyard assays to characterize ambient gRNA noise in single-cell CRISPR screens. We use these datasets to develop and train CLEANSER, a mixture model that identifies and filters ambient gRNA noise. This model takes advantage of the bimodal distribution between native and ambient gRNAs and includes both gRNA and cell-specific normalization parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy.","PeriodicalId":501161,"journal":{"name":"bioRxiv - Genomics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using CLEANSER\",\"authors\":\"Siyan Liu, Marisa C Hamilton, Thomas N Cowart, Alejandro Barrera, Lexi R Bounds, Alexander C Nelson, Richard W Doty, Andrew S Allen, Gregory E Crawford, William H Majoros, Charles A. Gersbach\",\"doi\":\"10.1101/2024.09.04.611293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent technological developments in single-cell RNA-seq CRISPR screens enable high-throughput investigation of the genome. Through transduction of a gRNA library to a cell population followed by transcriptomic profiling by scRNA-seq, it is possible to characterize the effects of thousands of genomic perturbations on global gene expression. A major source of noise in scRNA-seq CRISPR screens are ambient gRNAs, which are contaminating gRNAs that likely originate from other cells. If not properly filtered, ambient gRNAs can result in an excess of false positive gRNA assignments. Here, we utilize CRISPR barnyard assays to characterize ambient gRNA noise in single-cell CRISPR screens. We use these datasets to develop and train CLEANSER, a mixture model that identifies and filters ambient gRNA noise. This model takes advantage of the bimodal distribution between native and ambient gRNAs and includes both gRNA and cell-specific normalization parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy.\",\"PeriodicalId\":501161,\"journal\":{\"name\":\"bioRxiv - Genomics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.611293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA-seq CRISPR 筛选技术的最新发展实现了对基因组的高通量研究。通过将 gRNA 文库转导到细胞群,然后用 scRNA-seq 进行转录组分析,可以确定成千上万个基因组扰动对全局基因表达的影响。在 scRNA-seq CRISPR 筛查中,环境 gRNA 是噪音的一个主要来源。如果不适当过滤,环境 gRNA 会导致过多的假阳性 gRNA 分配。在这里,我们利用 CRISPR barnyard 检测来描述单细胞 CRISPR 筛选中的环境 gRNA 噪声。我们利用这些数据集来开发和训练 CLEANSER,这是一种能识别和过滤环境 gRNA 噪音的混合模型。该模型利用了原生和环境 gRNA 之间的双峰分布,并包含 gRNA 和细胞特异性归一化参数,纠正了影响单个 gRNA 和细胞的混杂技术因素。CLEANSER 的输出结果是 gRNA-细胞分配处于原生分布而非环境分布的概率。我们发现,环境 gRNA 过滤方法会影响差异基因表达分析结果,而 CLEANSER 通过提高 gRNA-细胞分配的准确性优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using CLEANSER
Recent technological developments in single-cell RNA-seq CRISPR screens enable high-throughput investigation of the genome. Through transduction of a gRNA library to a cell population followed by transcriptomic profiling by scRNA-seq, it is possible to characterize the effects of thousands of genomic perturbations on global gene expression. A major source of noise in scRNA-seq CRISPR screens are ambient gRNAs, which are contaminating gRNAs that likely originate from other cells. If not properly filtered, ambient gRNAs can result in an excess of false positive gRNA assignments. Here, we utilize CRISPR barnyard assays to characterize ambient gRNA noise in single-cell CRISPR screens. We use these datasets to develop and train CLEANSER, a mixture model that identifies and filters ambient gRNA noise. This model takes advantage of the bimodal distribution between native and ambient gRNAs and includes both gRNA and cell-specific normalization parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信