{"title":"利用 DPL 热弹性模型研究静止在弹性地基上并承受外部载荷的微孔板中的热-粘弹性相互作用","authors":"Mohammed Aldandani, Ahmed Abouelregal","doi":"10.1007/s40997-024-00798-3","DOIUrl":null,"url":null,"abstract":"<p>This work specifically examines the modeling of the transient thermodynamic reaction of a Kirchhoff–Love thermoelastic thin circular plate that is simply supported and set on an elastic base of Winkler type. The plate experiences a time-varying external load. The Kelvin-Voigt model is employed to simulate the viscoelastic behavior of the plate in this investigation. The modified dual-phase-lag (DPL) thermoelasticity model is used to represent the intricate thermoelastic properties of the plate accurately. The DPL thermoelastic model includes the effects of restricted thermomechanical diffusion, which considers the connection between thermal and mechanical events in the plate. This model offers a more extensive depiction of the plate's reaction, considering both temperature and mechanical factors. Analytical solutions for the studied variables, such as deflection, temperature, displacement, bending moment, and thermal stress, were extracted using the Laplace transform. The viscoelastic coefficient, Winkler base, and the angular frequency of the distributed load greatly affect how circular plate structures behave, as shown by numerical examples and insightful discussions. Finally, to verify the validity of the results and the proposed model, they were compared with previously published studies and their corresponding thermoelastic models.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"2 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Thermo-Viscoelastic Interactions in Microplates Resting on an Elastic Foundation and Subjected to External Loads Using DPL Thermoelastic Model\",\"authors\":\"Mohammed Aldandani, Ahmed Abouelregal\",\"doi\":\"10.1007/s40997-024-00798-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work specifically examines the modeling of the transient thermodynamic reaction of a Kirchhoff–Love thermoelastic thin circular plate that is simply supported and set on an elastic base of Winkler type. The plate experiences a time-varying external load. The Kelvin-Voigt model is employed to simulate the viscoelastic behavior of the plate in this investigation. The modified dual-phase-lag (DPL) thermoelasticity model is used to represent the intricate thermoelastic properties of the plate accurately. The DPL thermoelastic model includes the effects of restricted thermomechanical diffusion, which considers the connection between thermal and mechanical events in the plate. This model offers a more extensive depiction of the plate's reaction, considering both temperature and mechanical factors. Analytical solutions for the studied variables, such as deflection, temperature, displacement, bending moment, and thermal stress, were extracted using the Laplace transform. The viscoelastic coefficient, Winkler base, and the angular frequency of the distributed load greatly affect how circular plate structures behave, as shown by numerical examples and insightful discussions. Finally, to verify the validity of the results and the proposed model, they were compared with previously published studies and their corresponding thermoelastic models.</p>\",\"PeriodicalId\":49063,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40997-024-00798-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00798-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Study of Thermo-Viscoelastic Interactions in Microplates Resting on an Elastic Foundation and Subjected to External Loads Using DPL Thermoelastic Model
This work specifically examines the modeling of the transient thermodynamic reaction of a Kirchhoff–Love thermoelastic thin circular plate that is simply supported and set on an elastic base of Winkler type. The plate experiences a time-varying external load. The Kelvin-Voigt model is employed to simulate the viscoelastic behavior of the plate in this investigation. The modified dual-phase-lag (DPL) thermoelasticity model is used to represent the intricate thermoelastic properties of the plate accurately. The DPL thermoelastic model includes the effects of restricted thermomechanical diffusion, which considers the connection between thermal and mechanical events in the plate. This model offers a more extensive depiction of the plate's reaction, considering both temperature and mechanical factors. Analytical solutions for the studied variables, such as deflection, temperature, displacement, bending moment, and thermal stress, were extracted using the Laplace transform. The viscoelastic coefficient, Winkler base, and the angular frequency of the distributed load greatly affect how circular plate structures behave, as shown by numerical examples and insightful discussions. Finally, to verify the validity of the results and the proposed model, they were compared with previously published studies and their corresponding thermoelastic models.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.