利用分子监测检测疟疾流行地区的输入性疟疾感染:现状与挑战

Mahdi Safarpour, Luis Esteban Cabrera Sosa, Dionicia Gamboa, Jean-Pierre Van geertruyden, Christopher Delgado-Ratto
{"title":"利用分子监测检测疟疾流行地区的输入性疟疾感染:现状与挑战","authors":"Mahdi Safarpour, Luis Esteban Cabrera Sosa, Dionicia Gamboa, Jean-Pierre Van geertruyden, Christopher Delgado-Ratto","doi":"10.1101/2024.09.09.24313136","DOIUrl":null,"url":null,"abstract":"The Global Technical Strategy for Malaria 2016 to 2030 targets eliminating malaria from at least 35 countries and reducing case incidence by 90% globally. The importation of parasites due to human mobilization presents a significant challenge to achieve elimination as it can undermine local interventions. A thorough understanding of importation is necessary to support efforts to control and further lead to elimination. Parasite genetic data is extensively deployed to investigate the space-time spread of imported infections. In this matter, this systematic review aimed to aggregate evidence on the use of parasite genetic data for mapping imported malaria and the statistical analytical methods. We discuss the advantages and limitations of the deployed genetic approaches and propose a suitable type of genetic data and statistical framework to discriminate imported malaria infections from local infections. The findings provide actionable insights for national control programs, helping them select the most suitable methods for detecting imported cases while supporting the evaluation of elimination program performance, particularly in low transmission settings.","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting imported malaria infections in endemic settings using molecular surveillance: current state and challenges\",\"authors\":\"Mahdi Safarpour, Luis Esteban Cabrera Sosa, Dionicia Gamboa, Jean-Pierre Van geertruyden, Christopher Delgado-Ratto\",\"doi\":\"10.1101/2024.09.09.24313136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Global Technical Strategy for Malaria 2016 to 2030 targets eliminating malaria from at least 35 countries and reducing case incidence by 90% globally. The importation of parasites due to human mobilization presents a significant challenge to achieve elimination as it can undermine local interventions. A thorough understanding of importation is necessary to support efforts to control and further lead to elimination. Parasite genetic data is extensively deployed to investigate the space-time spread of imported infections. In this matter, this systematic review aimed to aggregate evidence on the use of parasite genetic data for mapping imported malaria and the statistical analytical methods. We discuss the advantages and limitations of the deployed genetic approaches and propose a suitable type of genetic data and statistical framework to discriminate imported malaria infections from local infections. The findings provide actionable insights for national control programs, helping them select the most suitable methods for detecting imported cases while supporting the evaluation of elimination program performance, particularly in low transmission settings.\",\"PeriodicalId\":501071,\"journal\":{\"name\":\"medRxiv - Epidemiology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.09.24313136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.24313136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2016 年至 2030 年全球疟疾技术战略》的目标是在至少 35 个国家消除疟疾,并将全球病例发生率降低 90%。人类动员导致的寄生虫输入是实现消除疟疾目标的重大挑战,因为这会破坏当地的干预措施。要支持控制和进一步消除疟疾的工作,就必须对输入寄生虫有透彻的了解。寄生虫基因数据被广泛用于调查输入感染的时空传播。因此,本系统综述旨在汇总利用寄生虫基因数据绘制输入性疟疾图谱的证据以及统计分析方法。我们讨论了已部署的基因方法的优势和局限性,并提出了一种合适的基因数据类型和统计框架,以区分输入性疟疾感染和本地感染。研究结果为国家控制计划提供了可操作的见解,帮助他们选择最合适的方法来检测输入病例,同时支持对消除疟疾计划绩效的评估,尤其是在低传播环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting imported malaria infections in endemic settings using molecular surveillance: current state and challenges
The Global Technical Strategy for Malaria 2016 to 2030 targets eliminating malaria from at least 35 countries and reducing case incidence by 90% globally. The importation of parasites due to human mobilization presents a significant challenge to achieve elimination as it can undermine local interventions. A thorough understanding of importation is necessary to support efforts to control and further lead to elimination. Parasite genetic data is extensively deployed to investigate the space-time spread of imported infections. In this matter, this systematic review aimed to aggregate evidence on the use of parasite genetic data for mapping imported malaria and the statistical analytical methods. We discuss the advantages and limitations of the deployed genetic approaches and propose a suitable type of genetic data and statistical framework to discriminate imported malaria infections from local infections. The findings provide actionable insights for national control programs, helping them select the most suitable methods for detecting imported cases while supporting the evaluation of elimination program performance, particularly in low transmission settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信