简要分析迭代下一边界检测网络在太行松图像中的树环划分

Henry Marichal, Gregory Randall
{"title":"简要分析迭代下一边界检测网络在太行松图像中的树环划分","authors":"Henry Marichal, Gregory Randall","doi":"arxiv-2408.14343","DOIUrl":null,"url":null,"abstract":"This work presents the INBD network proposed by Gillert et al. in CVPR-2023\nand studies its application for delineating tree rings in RGB images of Pinus\ntaeda cross sections captured by a smartphone (UruDendro dataset), which are\nimages with different characteristics from the ones used to train the method.\nThe INBD network operates in two stages: first, it segments the background,\npith, and ring boundaries. In the second stage, the image is transformed into\npolar coordinates, and ring boundaries are iteratively segmented from the pith\nto the bark. Both stages are based on the U-Net architecture. The method\nachieves an F-Score of 77.5, a mAR of 0.540, and an ARAND of 0.205 on the\nevaluation set. The code for the experiments is available at\nhttps://github.com/hmarichal93/mlbrief_inbd.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Brief Analysis of the Iterative Next Boundary Detection Network for Tree Rings Delineation in Images of Pinus taeda\",\"authors\":\"Henry Marichal, Gregory Randall\",\"doi\":\"arxiv-2408.14343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the INBD network proposed by Gillert et al. in CVPR-2023\\nand studies its application for delineating tree rings in RGB images of Pinus\\ntaeda cross sections captured by a smartphone (UruDendro dataset), which are\\nimages with different characteristics from the ones used to train the method.\\nThe INBD network operates in two stages: first, it segments the background,\\npith, and ring boundaries. In the second stage, the image is transformed into\\npolar coordinates, and ring boundaries are iteratively segmented from the pith\\nto the bark. Both stages are based on the U-Net architecture. The method\\nachieves an F-Score of 77.5, a mAR of 0.540, and an ARAND of 0.205 on the\\nevaluation set. The code for the experiments is available at\\nhttps://github.com/hmarichal93/mlbrief_inbd.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了 Gillert 等人在 CVPR-2023 中提出的 INBD 网络,并研究了该网络在智能手机捕捉的 Pinustaeda 横截面 RGB 图像(UruDendro 数据集)中划分树环的应用,这些图像与用于训练该方法的图像具有不同的特征。在第二阶段,将图像转换为极坐标,从髓部到树皮对环状边界进行迭代分割。这两个阶段都基于 U-Net 架构。该方法在评估集上的 F 分数为 77.5,mAR 为 0.540,ARAND 为 0.205。实验代码可在https://github.com/hmarichal93/mlbrief_inbd。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Brief Analysis of the Iterative Next Boundary Detection Network for Tree Rings Delineation in Images of Pinus taeda
This work presents the INBD network proposed by Gillert et al. in CVPR-2023 and studies its application for delineating tree rings in RGB images of Pinus taeda cross sections captured by a smartphone (UruDendro dataset), which are images with different characteristics from the ones used to train the method. The INBD network operates in two stages: first, it segments the background, pith, and ring boundaries. In the second stage, the image is transformed into polar coordinates, and ring boundaries are iteratively segmented from the pith to the bark. Both stages are based on the U-Net architecture. The method achieves an F-Score of 77.5, a mAR of 0.540, and an ARAND of 0.205 on the evaluation set. The code for the experiments is available at https://github.com/hmarichal93/mlbrief_inbd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信