{"title":"基于非线性偏微分方程的高斯过程的参数推理","authors":"Zhaohui Li, Shihao Yang, C. F. Jeff Wu","doi":"10.1137/22m1514131","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 964-1004, September 2024. <br/> Abstract.Partial differential equations (PDEs) are widely used for the description of physical and engineering phenomena. Some key parameters involved in PDEs, which represent certain physical properties with important scientific interpretations, are difficult or even impossible to measure directly. Estimating these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations for numerical solutions to PDEs through algorithms such as the finite element method, which can be time consuming, especially for nonlinear PDEs. In this paper, we propose a novel method for the inference of unknown parameters in PDEs, called the PDE-informed Gaussian process (PIGP)–based parameter inference method. Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that, under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transforms the nonlinear PDE into an equivalent PDE system linear in all derivatives, which our PIGP-based method can handle. The proposed method can be applied to a broad spectrum of nonlinear PDEs. The PIGP-based method can be applied to multidimensional PDE systems and PDE systems with unobserved components. Like conventional Bayesian approaches, the method can provide uncertainty quantification for both the unknown parameters and the PDE solution. The PIGP-based method also completely bypasses the numerical solver for PDEs. The proposed method is demonstrated through several application examples from different areas.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter Inference Based on Gaussian Processes Informed by Nonlinear Partial Differential Equations\",\"authors\":\"Zhaohui Li, Shihao Yang, C. F. Jeff Wu\",\"doi\":\"10.1137/22m1514131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 964-1004, September 2024. <br/> Abstract.Partial differential equations (PDEs) are widely used for the description of physical and engineering phenomena. Some key parameters involved in PDEs, which represent certain physical properties with important scientific interpretations, are difficult or even impossible to measure directly. Estimating these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations for numerical solutions to PDEs through algorithms such as the finite element method, which can be time consuming, especially for nonlinear PDEs. In this paper, we propose a novel method for the inference of unknown parameters in PDEs, called the PDE-informed Gaussian process (PIGP)–based parameter inference method. Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that, under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transforms the nonlinear PDE into an equivalent PDE system linear in all derivatives, which our PIGP-based method can handle. The proposed method can be applied to a broad spectrum of nonlinear PDEs. The PIGP-based method can be applied to multidimensional PDE systems and PDE systems with unobserved components. Like conventional Bayesian approaches, the method can provide uncertainty quantification for both the unknown parameters and the PDE solution. The PIGP-based method also completely bypasses the numerical solver for PDEs. The proposed method is demonstrated through several application examples from different areas.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1514131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1514131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Parameter Inference Based on Gaussian Processes Informed by Nonlinear Partial Differential Equations
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 964-1004, September 2024. Abstract.Partial differential equations (PDEs) are widely used for the description of physical and engineering phenomena. Some key parameters involved in PDEs, which represent certain physical properties with important scientific interpretations, are difficult or even impossible to measure directly. Estimating these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations for numerical solutions to PDEs through algorithms such as the finite element method, which can be time consuming, especially for nonlinear PDEs. In this paper, we propose a novel method for the inference of unknown parameters in PDEs, called the PDE-informed Gaussian process (PIGP)–based parameter inference method. Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that, under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transforms the nonlinear PDE into an equivalent PDE system linear in all derivatives, which our PIGP-based method can handle. The proposed method can be applied to a broad spectrum of nonlinear PDEs. The PIGP-based method can be applied to multidimensional PDE systems and PDE systems with unobserved components. Like conventional Bayesian approaches, the method can provide uncertainty quantification for both the unknown parameters and the PDE solution. The PIGP-based method also completely bypasses the numerical solver for PDEs. The proposed method is demonstrated through several application examples from different areas.