Q-MRS:用于定量磁共振频谱分析的深度学习框架

Christopher J. Wu, Lawrence S. Kegeles, Jia Guo
{"title":"Q-MRS:用于定量磁共振频谱分析的深度学习框架","authors":"Christopher J. Wu, Lawrence S. Kegeles, Jia Guo","doi":"arxiv-2408.15999","DOIUrl":null,"url":null,"abstract":"Magnetic resonance spectroscopy (MRS) is an established technique for\nstudying tissue metabolism, particularly in central nervous system disorders.\nWhile powerful and versatile, MRS is often limited by challenges associated\nwith data quality, processing, and quantification. Existing MRS quantification\nmethods face difficulties in balancing model complexity and reproducibility\nduring spectral modeling, often falling into the trap of either\noversimplification or over-parameterization. To address these limitations, this\nstudy introduces a deep learning (DL) framework that employs transfer learning,\nin which the model is pre-trained on simulated datasets before it undergoes\nfine-tuning on in vivo data. The proposed framework showed promising\nperformance when applied to the Philips dataset from the BIG GABA repository\nand represents an exciting advancement in MRS data analysis.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Q-MRS: A Deep Learning Framework for Quantitative Magnetic Resonance Spectra Analysis\",\"authors\":\"Christopher J. Wu, Lawrence S. Kegeles, Jia Guo\",\"doi\":\"arxiv-2408.15999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance spectroscopy (MRS) is an established technique for\\nstudying tissue metabolism, particularly in central nervous system disorders.\\nWhile powerful and versatile, MRS is often limited by challenges associated\\nwith data quality, processing, and quantification. Existing MRS quantification\\nmethods face difficulties in balancing model complexity and reproducibility\\nduring spectral modeling, often falling into the trap of either\\noversimplification or over-parameterization. To address these limitations, this\\nstudy introduces a deep learning (DL) framework that employs transfer learning,\\nin which the model is pre-trained on simulated datasets before it undergoes\\nfine-tuning on in vivo data. The proposed framework showed promising\\nperformance when applied to the Philips dataset from the BIG GABA repository\\nand represents an exciting advancement in MRS data analysis.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁共振波谱(MRS)是研究组织代谢,尤其是中枢神经系统疾病的成熟技术。虽然 MRS 功能强大且用途广泛,但它往往受限于与数据质量、处理和量化相关的挑战。现有的 MRS 定量方法在光谱建模过程中难以在模型复杂性和可重复性之间取得平衡,往往会陷入过度简化或过度参数化的陷阱。为了解决这些局限性,本研究引入了一种采用迁移学习的深度学习(DL)框架,即先在模拟数据集上对模型进行预训练,然后再在体内数据上进行微调。所提出的框架在应用于 BIG GABA 数据库中的飞利浦数据集时表现出了良好的性能,代表了 MRS 数据分析领域令人兴奋的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Q-MRS: A Deep Learning Framework for Quantitative Magnetic Resonance Spectra Analysis
Magnetic resonance spectroscopy (MRS) is an established technique for studying tissue metabolism, particularly in central nervous system disorders. While powerful and versatile, MRS is often limited by challenges associated with data quality, processing, and quantification. Existing MRS quantification methods face difficulties in balancing model complexity and reproducibility during spectral modeling, often falling into the trap of either oversimplification or over-parameterization. To address these limitations, this study introduces a deep learning (DL) framework that employs transfer learning, in which the model is pre-trained on simulated datasets before it undergoes fine-tuning on in vivo data. The proposed framework showed promising performance when applied to the Philips dataset from the BIG GABA repository and represents an exciting advancement in MRS data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信