PharmacoMatch:通过神经子图匹配进行高效的三维药效学筛选

Daniel Rose, Oliver Wieder, Thomas Seidel, Thierry Langer
{"title":"PharmacoMatch:通过神经子图匹配进行高效的三维药效学筛选","authors":"Daniel Rose, Oliver Wieder, Thomas Seidel, Thierry Langer","doi":"arxiv-2409.06316","DOIUrl":null,"url":null,"abstract":"The increasing size of screening libraries poses a significant challenge for\nthe development of virtual screening methods for drug discovery, necessitating\na re-evaluation of traditional approaches in the era of big data. Although 3D\npharmacophore screening remains a prevalent technique, its application to very\nlarge datasets is limited by the computational cost associated with matching\nquery pharmacophores to database ligands. In this study, we introduce\nPharmacoMatch, a novel contrastive learning approach based on neural subgraph\nmatching. Our method reinterprets pharmacophore screening as an approximate\nsubgraph matching problem and enables efficient querying of conformational\ndatabases by encoding query-target relationships in the embedding space. We\nconduct comprehensive evaluations of the learned representations and benchmark\nour method on virtual screening datasets in a zero-shot setting. Our findings\ndemonstrate significantly shorter runtimes for pharmacophore matching, offering\na promising speed-up for screening very large datasets.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PharmacoMatch: Efficient 3D Pharmacophore Screening through Neural Subgraph Matching\",\"authors\":\"Daniel Rose, Oliver Wieder, Thomas Seidel, Thierry Langer\",\"doi\":\"arxiv-2409.06316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing size of screening libraries poses a significant challenge for\\nthe development of virtual screening methods for drug discovery, necessitating\\na re-evaluation of traditional approaches in the era of big data. Although 3D\\npharmacophore screening remains a prevalent technique, its application to very\\nlarge datasets is limited by the computational cost associated with matching\\nquery pharmacophores to database ligands. In this study, we introduce\\nPharmacoMatch, a novel contrastive learning approach based on neural subgraph\\nmatching. Our method reinterprets pharmacophore screening as an approximate\\nsubgraph matching problem and enables efficient querying of conformational\\ndatabases by encoding query-target relationships in the embedding space. We\\nconduct comprehensive evaluations of the learned representations and benchmark\\nour method on virtual screening datasets in a zero-shot setting. Our findings\\ndemonstrate significantly shorter runtimes for pharmacophore matching, offering\\na promising speed-up for screening very large datasets.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

筛选库规模的不断扩大对药物发现虚拟筛选方法的开发提出了重大挑战,因此有必要在大数据时代对传统方法进行重新评估。尽管三维药效团筛选仍然是一种流行的技术,但由于将查询药效团与数据库配体进行匹配所需的计算成本,它在超大数据集上的应用受到了限制。在本研究中,我们介绍了一种基于神经子图匹配的新型对比学习方法--PharmacoMatch。我们的方法将药源筛选重新解释为近似子图匹配问题,并通过在嵌入空间中编码查询与目标的关系,实现构象数据库的高效查询。我们对学习到的表征进行了全面评估,并在虚拟筛选数据集上对我们的方法进行了零点测试。我们的研究结果表明,药源匹配的运行时间大大缩短,为超大型数据集的筛选提供了很好的提速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PharmacoMatch: Efficient 3D Pharmacophore Screening through Neural Subgraph Matching
The increasing size of screening libraries poses a significant challenge for the development of virtual screening methods for drug discovery, necessitating a re-evaluation of traditional approaches in the era of big data. Although 3D pharmacophore screening remains a prevalent technique, its application to very large datasets is limited by the computational cost associated with matching query pharmacophores to database ligands. In this study, we introduce PharmacoMatch, a novel contrastive learning approach based on neural subgraph matching. Our method reinterprets pharmacophore screening as an approximate subgraph matching problem and enables efficient querying of conformational databases by encoding query-target relationships in the embedding space. We conduct comprehensive evaluations of the learned representations and benchmark our method on virtual screening datasets in a zero-shot setting. Our findings demonstrate significantly shorter runtimes for pharmacophore matching, offering a promising speed-up for screening very large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信