用于增强 H2O2 电化学检测的原位合成金共轭血红蛋白-Cu3 (PO4)2 混合纳米金属

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL
Mallesh Santhosh, Tusan Park
{"title":"用于增强 H2O2 电化学检测的原位合成金共轭血红蛋白-Cu3 (PO4)2 混合纳米金属","authors":"Mallesh Santhosh, Tusan Park","doi":"10.1007/s12678-024-00886-7","DOIUrl":null,"url":null,"abstract":"<p>In situ synthesis of novel hybrid organic–inorganic nanopetals (HNPs) of Copper (Cu<sup>2+</sup>) and gold-conjugated hemoglobin (Au@Hb) is reported. The presence of Au within the protein matrix prevents the formation of a flower-like assembly of the formed nanopetals of Au@Hb and Cu<sup>2+</sup> via the co-precipitation method. Morphological, chemical, and electrocatalytic activities of in situ synthesized Au@Hb-Cu HNPs were examined systematically. The hybrid nanopetal (Au@Hb-Cu HNP)-modified screen-printed PET electrodes show enhanced electrocatalytic activity toward the oxidation of H<sub>2</sub>O<sub>2</sub> compared to electrodes modified with Hb-copper hybrid nanoflowers (Hb-Cu HNFs) without Au conjugation. The proposed biosensor exhibits excellent electrochemical performance with broad linear responses over a H<sub>2</sub>O<sub>2</sub> concentration ranging from 5 to 1000 µM (<i>R</i><sup>2</sup> = 0.99) and showed a lower detection limit of 1.46 µM at 0.30 V vs. pseudo Ag/AgCl. Enhanced electrochemical performance is attributed to heterogeneous active sites over hybrid nanopetal surfaces. Moreover, the hybrid nanopetal–modified electrodes showed excellent stability and anti-interference performance in the presence of ascorbic acid, uric acid, fructose, and glucose. These results demonstrate that Au@Hb-Cu HNPs offer a better and more promising alternative for the electrochemical detection of H<sub>2</sub>O<sub>2</sub> sensitively.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Synthesized Gold-Conjugated Hemoglobin-Cu3 (PO4)2 Hybrid Nanopetals for Enhanced Electrochemical Detection of H2O2\",\"authors\":\"Mallesh Santhosh, Tusan Park\",\"doi\":\"10.1007/s12678-024-00886-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In situ synthesis of novel hybrid organic–inorganic nanopetals (HNPs) of Copper (Cu<sup>2+</sup>) and gold-conjugated hemoglobin (Au@Hb) is reported. The presence of Au within the protein matrix prevents the formation of a flower-like assembly of the formed nanopetals of Au@Hb and Cu<sup>2+</sup> via the co-precipitation method. Morphological, chemical, and electrocatalytic activities of in situ synthesized Au@Hb-Cu HNPs were examined systematically. The hybrid nanopetal (Au@Hb-Cu HNP)-modified screen-printed PET electrodes show enhanced electrocatalytic activity toward the oxidation of H<sub>2</sub>O<sub>2</sub> compared to electrodes modified with Hb-copper hybrid nanoflowers (Hb-Cu HNFs) without Au conjugation. The proposed biosensor exhibits excellent electrochemical performance with broad linear responses over a H<sub>2</sub>O<sub>2</sub> concentration ranging from 5 to 1000 µM (<i>R</i><sup>2</sup> = 0.99) and showed a lower detection limit of 1.46 µM at 0.30 V vs. pseudo Ag/AgCl. Enhanced electrochemical performance is attributed to heterogeneous active sites over hybrid nanopetal surfaces. Moreover, the hybrid nanopetal–modified electrodes showed excellent stability and anti-interference performance in the presence of ascorbic acid, uric acid, fructose, and glucose. These results demonstrate that Au@Hb-Cu HNPs offer a better and more promising alternative for the electrochemical detection of H<sub>2</sub>O<sub>2</sub> sensitively.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s12678-024-00886-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s12678-024-00886-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

报告了铜(Cu2+)和金共轭血红蛋白(Au@Hb)原位合成新型有机-无机杂化纳米金属(HNPs)的过程。蛋白质基质中金的存在阻止了通过共沉淀法形成的 Au@Hb 和 Cu2+ 纳米金属的花状组装。研究人员系统地考察了原位合成的 Au@Hb-Cu HNPs 的形态、化学和电催化活性。与不添加金的铅铜杂化纳米花(Hb-Cu HNFs)修饰的电极相比,杂化纳米金属(Au@Hb-Cu HNP)修饰的丝网印刷 PET 电极对 H2O2 的氧化具有更强的电催化活性。所提出的生物传感器具有优异的电化学性能,在 H2O2 浓度为 5 到 1000 µM 的范围内具有广泛的线性响应(R2 = 0.99),在 0.30 V 电压下与假银/氯化银相比,检测限低至 1.46 µM。电化学性能的增强归功于混合纳米金属表面的异质活性位点。此外,混合纳米金属修饰的电极在抗坏血酸、尿酸、果糖和葡萄糖存在下表现出优异的稳定性和抗干扰性能。这些结果表明,Au@Hb-Cu HNPs 为电化学灵敏检测 H2O2 提供了一种更好、更有前景的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Synthesized Gold-Conjugated Hemoglobin-Cu3 (PO4)2 Hybrid Nanopetals for Enhanced Electrochemical Detection of H2O2

In Situ Synthesized Gold-Conjugated Hemoglobin-Cu3 (PO4)2 Hybrid Nanopetals for Enhanced Electrochemical Detection of H2O2

In situ synthesis of novel hybrid organic–inorganic nanopetals (HNPs) of Copper (Cu2+) and gold-conjugated hemoglobin (Au@Hb) is reported. The presence of Au within the protein matrix prevents the formation of a flower-like assembly of the formed nanopetals of Au@Hb and Cu2+ via the co-precipitation method. Morphological, chemical, and electrocatalytic activities of in situ synthesized Au@Hb-Cu HNPs were examined systematically. The hybrid nanopetal (Au@Hb-Cu HNP)-modified screen-printed PET electrodes show enhanced electrocatalytic activity toward the oxidation of H2O2 compared to electrodes modified with Hb-copper hybrid nanoflowers (Hb-Cu HNFs) without Au conjugation. The proposed biosensor exhibits excellent electrochemical performance with broad linear responses over a H2O2 concentration ranging from 5 to 1000 µM (R2 = 0.99) and showed a lower detection limit of 1.46 µM at 0.30 V vs. pseudo Ag/AgCl. Enhanced electrochemical performance is attributed to heterogeneous active sites over hybrid nanopetal surfaces. Moreover, the hybrid nanopetal–modified electrodes showed excellent stability and anti-interference performance in the presence of ascorbic acid, uric acid, fructose, and glucose. These results demonstrate that Au@Hb-Cu HNPs offer a better and more promising alternative for the electrochemical detection of H2O2 sensitively.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信