{"title":"在 $$\\mathbb {P}^{1}$ 上数抛物线主 G 束带的无热点部分","authors":"Rahul Singh","doi":"10.1007/s00031-024-09877-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a split connected reductive group over <span>\\(\\mathbb {F}_q\\)</span> and let <span>\\(\\mathbb {P}^1\\)</span> be the projective line over <span>\\(\\mathbb {F}_q\\)</span>. Firstly, we give an explicit formula for the number of <span>\\(\\mathbb {F}_{q}\\)</span>-rational points of generalized Steinberg varieties of <i>G</i>. Secondly, for each principal <i>G</i>-bundle over <span>\\(\\mathbb {P}^1\\)</span>, we give an explicit formula counting the number of triples consisting of parabolic structures at 0 and <span>\\(\\infty \\)</span> and a compatible nilpotent section of the associated adjoint bundle. In the case of <span>\\(GL_{n}\\)</span> we calculate a generating function of such volumes re-deriving a result of Mellit.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting Parabolic Principal G-Bundles with Nilpotent Sections Over $$\\\\mathbb {P}^{1}$$\",\"authors\":\"Rahul Singh\",\"doi\":\"10.1007/s00031-024-09877-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a split connected reductive group over <span>\\\\(\\\\mathbb {F}_q\\\\)</span> and let <span>\\\\(\\\\mathbb {P}^1\\\\)</span> be the projective line over <span>\\\\(\\\\mathbb {F}_q\\\\)</span>. Firstly, we give an explicit formula for the number of <span>\\\\(\\\\mathbb {F}_{q}\\\\)</span>-rational points of generalized Steinberg varieties of <i>G</i>. Secondly, for each principal <i>G</i>-bundle over <span>\\\\(\\\\mathbb {P}^1\\\\)</span>, we give an explicit formula counting the number of triples consisting of parabolic structures at 0 and <span>\\\\(\\\\infty \\\\)</span> and a compatible nilpotent section of the associated adjoint bundle. In the case of <span>\\\\(GL_{n}\\\\)</span> we calculate a generating function of such volumes re-deriving a result of Mellit.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09877-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09877-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个在 \(\mathbb {F}_q\) 上的分裂连通还原群,让 \(\mathbb {P}^1\) 是在\(\mathbb {F}_q\) 上的投影线。首先,我们给出了 G 的广义 Steinberg varieties 的 \(\mathbb {F}_{q}\)-rational point 的数量的明确公式。其次,对于 \(\mathbb {P}^1\) 上的每个主 G 束,我们给出了一个明确的公式来计算由在 0 和 \(\infty \) 处的抛物线结构以及相关邻接束的相容零点截面组成的三元组的数量。在\(GL_{n}\)的情况下,我们计算了这样的卷的生成函数,重新得出了梅利特的一个结果。
Counting Parabolic Principal G-Bundles with Nilpotent Sections Over $$\mathbb {P}^{1}$$
Let G be a split connected reductive group over \(\mathbb {F}_q\) and let \(\mathbb {P}^1\) be the projective line over \(\mathbb {F}_q\). Firstly, we give an explicit formula for the number of \(\mathbb {F}_{q}\)-rational points of generalized Steinberg varieties of G. Secondly, for each principal G-bundle over \(\mathbb {P}^1\), we give an explicit formula counting the number of triples consisting of parabolic structures at 0 and \(\infty \) and a compatible nilpotent section of the associated adjoint bundle. In the case of \(GL_{n}\) we calculate a generating function of such volumes re-deriving a result of Mellit.