Palati Tuerxun , Takkun Ng , Jiadong Sun , Farong Ou , Xiaoshi Jia , Ke Zhao , Ping Zhu
{"title":"脂质毒素A4能调节PKA/CREB和NF-κB信号通路,从而减轻颞下颌关节骨关节炎中软骨细胞的分解和凋亡。","authors":"Palati Tuerxun , Takkun Ng , Jiadong Sun , Farong Ou , Xiaoshi Jia , Ke Zhao , Ping Zhu","doi":"10.1016/j.yexcr.2024.114249","DOIUrl":null,"url":null,"abstract":"<div><p>Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by the degradation of the extracellular matrix (ECM) in cartilage and the apoptosis of chondrocytes, which is caused by inflammation and disruptions of chondrocyte metabolism and inflammation. Lipoxin A4 (LXA4), a specialized pro-resolving mediator, has been shown to inhibit inflammation and regulate the balance between ECM synthesis and degradation. However, the therapeutic effects of LXA4 on TMJ-OA and its underlying mechanisms remain unclear. Interleukin-1 beta (IL-1β)-induced chondrocyte and surgically induced TMJ-OA rat models were established in this study. The viability of chondrocytes treated with LXA4 was evaluated with the cell counting kit-8 (CCK-8) assay, while protein levels were assessed by western blot analysis, and the apoptosis rate was evaluated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining. Histological analysis was conducted to evaluate the impact of LXA4 on cartilage degradation in TMJ-OA rat models. In vitro, the qRT-PCR and western blot analysis demonstrated that LXA4 facilitated the upregulation of collagen proteins (Collagen II) and decreased expression of matrix metalloproteinases (MMP-3, and MMP-13) associated with ECM modulation. LXA4 enhanced the TMJ-OA chondrocyte viability and decreased apoptotic rate. In vivo, histology and immunohistochemistry (IHC) analysis revealed that intraperitoneal injection of LXA4 contributed to the amelioration of chondrocyte injuries and deceleration of TMJ-OA. Transcriptomic sequencing revealed that cAMP signaling pathway was up-regulated and NF-κB signaling pathway was down-regulated in LXA4 treated group. LXA4 inhibited the phosphorylation of P65 and inhibitor of nuclear factor kappa B (IκBα) proteins while enhancing the phosphorylation PKA and CREB. This study demonstrates the potential of LXA4 as a therapeutic agent for suppressing chondrocyte catabolism and apoptosis by increasing PKA/CREB activity and decreasing NF-κB signaling.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114249"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipoxin A4 modulates the PKA/CREB and NF-κB signaling pathway to mitigate chondrocyte catabolism and apoptosis in temporomandibular joint osteoarthritis\",\"authors\":\"Palati Tuerxun , Takkun Ng , Jiadong Sun , Farong Ou , Xiaoshi Jia , Ke Zhao , Ping Zhu\",\"doi\":\"10.1016/j.yexcr.2024.114249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by the degradation of the extracellular matrix (ECM) in cartilage and the apoptosis of chondrocytes, which is caused by inflammation and disruptions of chondrocyte metabolism and inflammation. Lipoxin A4 (LXA4), a specialized pro-resolving mediator, has been shown to inhibit inflammation and regulate the balance between ECM synthesis and degradation. However, the therapeutic effects of LXA4 on TMJ-OA and its underlying mechanisms remain unclear. Interleukin-1 beta (IL-1β)-induced chondrocyte and surgically induced TMJ-OA rat models were established in this study. The viability of chondrocytes treated with LXA4 was evaluated with the cell counting kit-8 (CCK-8) assay, while protein levels were assessed by western blot analysis, and the apoptosis rate was evaluated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining. Histological analysis was conducted to evaluate the impact of LXA4 on cartilage degradation in TMJ-OA rat models. In vitro, the qRT-PCR and western blot analysis demonstrated that LXA4 facilitated the upregulation of collagen proteins (Collagen II) and decreased expression of matrix metalloproteinases (MMP-3, and MMP-13) associated with ECM modulation. LXA4 enhanced the TMJ-OA chondrocyte viability and decreased apoptotic rate. In vivo, histology and immunohistochemistry (IHC) analysis revealed that intraperitoneal injection of LXA4 contributed to the amelioration of chondrocyte injuries and deceleration of TMJ-OA. Transcriptomic sequencing revealed that cAMP signaling pathway was up-regulated and NF-κB signaling pathway was down-regulated in LXA4 treated group. LXA4 inhibited the phosphorylation of P65 and inhibitor of nuclear factor kappa B (IκBα) proteins while enhancing the phosphorylation PKA and CREB. This study demonstrates the potential of LXA4 as a therapeutic agent for suppressing chondrocyte catabolism and apoptosis by increasing PKA/CREB activity and decreasing NF-κB signaling.</p></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114249\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003409\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003409","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lipoxin A4 modulates the PKA/CREB and NF-κB signaling pathway to mitigate chondrocyte catabolism and apoptosis in temporomandibular joint osteoarthritis
Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by the degradation of the extracellular matrix (ECM) in cartilage and the apoptosis of chondrocytes, which is caused by inflammation and disruptions of chondrocyte metabolism and inflammation. Lipoxin A4 (LXA4), a specialized pro-resolving mediator, has been shown to inhibit inflammation and regulate the balance between ECM synthesis and degradation. However, the therapeutic effects of LXA4 on TMJ-OA and its underlying mechanisms remain unclear. Interleukin-1 beta (IL-1β)-induced chondrocyte and surgically induced TMJ-OA rat models were established in this study. The viability of chondrocytes treated with LXA4 was evaluated with the cell counting kit-8 (CCK-8) assay, while protein levels were assessed by western blot analysis, and the apoptosis rate was evaluated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining. Histological analysis was conducted to evaluate the impact of LXA4 on cartilage degradation in TMJ-OA rat models. In vitro, the qRT-PCR and western blot analysis demonstrated that LXA4 facilitated the upregulation of collagen proteins (Collagen II) and decreased expression of matrix metalloproteinases (MMP-3, and MMP-13) associated with ECM modulation. LXA4 enhanced the TMJ-OA chondrocyte viability and decreased apoptotic rate. In vivo, histology and immunohistochemistry (IHC) analysis revealed that intraperitoneal injection of LXA4 contributed to the amelioration of chondrocyte injuries and deceleration of TMJ-OA. Transcriptomic sequencing revealed that cAMP signaling pathway was up-regulated and NF-κB signaling pathway was down-regulated in LXA4 treated group. LXA4 inhibited the phosphorylation of P65 and inhibitor of nuclear factor kappa B (IκBα) proteins while enhancing the phosphorylation PKA and CREB. This study demonstrates the potential of LXA4 as a therapeutic agent for suppressing chondrocyte catabolism and apoptosis by increasing PKA/CREB activity and decreasing NF-κB signaling.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.