墙壁剪切应力量化的深度学习方法:从数值训练到零点实验应用

Esther Lagemann, Julia Roeb, Steven L. Brunton, Christian Lagemann
{"title":"墙壁剪切应力量化的深度学习方法:从数值训练到零点实验应用","authors":"Esther Lagemann, Julia Roeb, Steven L. Brunton, Christian Lagemann","doi":"arxiv-2409.03933","DOIUrl":null,"url":null,"abstract":"The accurate quantification of wall-shear stress dynamics is of substantial\nimportance for various applications in fundamental and applied research,\nspanning areas from human health to aircraft design and optimization. Despite\nsignificant progress in experimental measurement techniques and post-processing\nalgorithms, temporally resolved wall-shear stress dynamics with adequate\nspatial resolution and within a suitable spatial domain remain an elusive goal.\nTo address this gap, we introduce a deep learning architecture that ingests\nwall-parallel velocity fields from the logarithmic layer of turbulent\nwall-bounded flows and outputs the corresponding 2D wall-shear stress fields\nwith identical spatial resolution and domain size. From a physical perspective,\nour framework acts as a surrogate model encapsulating the various mechanisms\nthrough which highly energetic outer-layer flow structures influence the\ngoverning wall-shear stress dynamics. The network is trained in a supervised\nfashion on a unified dataset comprising direct numerical simulations of\nstatistically 1D turbulent channel and spatially developing turbulent boundary\nlayer flows at friction Reynolds numbers ranging from 390 to 1,500. We\ndemonstrate a zero-shot applicability to experimental velocity fields obtained\nfrom Particle-Image Velocimetry measurements and verify the physical accuracy\nof the wall-shear stress estimates with synchronized wall-shear stress\nmeasurements using the Micro-Pillar Shear-Stress Sensor for Reynolds numbers up\nto 2,000. In summary, the presented framework lays the groundwork for\nextracting inaccessible experimental wall-shear stress information from readily\navailable velocity measurements and thus, facilitates advancements in a variety\nof experimental applications.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning approach to wall-shear stress quantification: From numerical training to zero-shot experimental application\",\"authors\":\"Esther Lagemann, Julia Roeb, Steven L. Brunton, Christian Lagemann\",\"doi\":\"arxiv-2409.03933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate quantification of wall-shear stress dynamics is of substantial\\nimportance for various applications in fundamental and applied research,\\nspanning areas from human health to aircraft design and optimization. Despite\\nsignificant progress in experimental measurement techniques and post-processing\\nalgorithms, temporally resolved wall-shear stress dynamics with adequate\\nspatial resolution and within a suitable spatial domain remain an elusive goal.\\nTo address this gap, we introduce a deep learning architecture that ingests\\nwall-parallel velocity fields from the logarithmic layer of turbulent\\nwall-bounded flows and outputs the corresponding 2D wall-shear stress fields\\nwith identical spatial resolution and domain size. From a physical perspective,\\nour framework acts as a surrogate model encapsulating the various mechanisms\\nthrough which highly energetic outer-layer flow structures influence the\\ngoverning wall-shear stress dynamics. The network is trained in a supervised\\nfashion on a unified dataset comprising direct numerical simulations of\\nstatistically 1D turbulent channel and spatially developing turbulent boundary\\nlayer flows at friction Reynolds numbers ranging from 390 to 1,500. We\\ndemonstrate a zero-shot applicability to experimental velocity fields obtained\\nfrom Particle-Image Velocimetry measurements and verify the physical accuracy\\nof the wall-shear stress estimates with synchronized wall-shear stress\\nmeasurements using the Micro-Pillar Shear-Stress Sensor for Reynolds numbers up\\nto 2,000. In summary, the presented framework lays the groundwork for\\nextracting inaccessible experimental wall-shear stress information from readily\\navailable velocity measurements and thus, facilitates advancements in a variety\\nof experimental applications.\",\"PeriodicalId\":501125,\"journal\":{\"name\":\"arXiv - PHYS - Fluid Dynamics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精确量化壁面剪切应力动态对于基础研究和应用研究中的各种应用都具有重要意义,研究领域涵盖人体健康、飞机设计和优化等。尽管在实验测量技术和后处理算法方面取得了重大进展,但在适当的空间域内具有足够空间分辨率的时间分辨壁面剪切应力动态仍是一个难以实现的目标。为了弥补这一差距,我们引入了一种深度学习架构,该架构可从湍流壁面流的对数层摄取壁面平行速度场,并以相同的空间分辨率和域大小输出相应的二维壁面剪切应力场。从物理角度看,我们的框架是一个替代模型,囊括了高能外层流结构影响壁面剪切应力动态的各种机制。该网络是在一个统一的数据集上以监督方式进行训练的,该数据集包括在摩擦雷诺数从 390 到 1,500 不等的条件下对静态一维湍流通道和空间发展湍流边界层流动的直接数值模拟。我们展示了粒子图像测速仪测量获得的实验速度场的零射频适用性,并利用微柱剪应力传感器同步测量了雷诺数高达 2,000 的壁面剪应力,验证了壁面剪应力估算的物理准确性。总之,本文提出的框架为从现成的速度测量结果中提取无法获取的实验壁面剪切应力信息奠定了基础,从而促进了各种实验应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning approach to wall-shear stress quantification: From numerical training to zero-shot experimental application
The accurate quantification of wall-shear stress dynamics is of substantial importance for various applications in fundamental and applied research, spanning areas from human health to aircraft design and optimization. Despite significant progress in experimental measurement techniques and post-processing algorithms, temporally resolved wall-shear stress dynamics with adequate spatial resolution and within a suitable spatial domain remain an elusive goal. To address this gap, we introduce a deep learning architecture that ingests wall-parallel velocity fields from the logarithmic layer of turbulent wall-bounded flows and outputs the corresponding 2D wall-shear stress fields with identical spatial resolution and domain size. From a physical perspective, our framework acts as a surrogate model encapsulating the various mechanisms through which highly energetic outer-layer flow structures influence the governing wall-shear stress dynamics. The network is trained in a supervised fashion on a unified dataset comprising direct numerical simulations of statistically 1D turbulent channel and spatially developing turbulent boundary layer flows at friction Reynolds numbers ranging from 390 to 1,500. We demonstrate a zero-shot applicability to experimental velocity fields obtained from Particle-Image Velocimetry measurements and verify the physical accuracy of the wall-shear stress estimates with synchronized wall-shear stress measurements using the Micro-Pillar Shear-Stress Sensor for Reynolds numbers up to 2,000. In summary, the presented framework lays the groundwork for extracting inaccessible experimental wall-shear stress information from readily available velocity measurements and thus, facilitates advancements in a variety of experimental applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信